IJSRET » November 11, 2024

Daily Archives: November 11, 2024

Uncategorized

Easy Trade: Forex Trading bot Using Artificial Intelligence

Easy Trade: Forex Trading bot Using Artificial Intelligence/strong>
Authors:-Professor Alim Khan, Rudransh Sharma, Abhinav Shukla, Kshitij Khare, Shivam Shukla

Abstract-The foreign exchange (forex) market, with its high liquidity and 24/5 trading hours, presents significant opportunities for investors. This paper discusses the development of a forex trading AI bot by a group of four college students, leveraging Python for programming and various analytical sources for strategy formulation. The project aims to create an automated trading system that utilizes machine learning algorithms and technical indicators to make informed trading decisions.

DOI: 10.61137/ijsret.vol.10.issue5.312
55

Published by:
Uncategorized

Social Media Insights

Social Media Insights/strong>
Authors:-Saniya M. Kadmude, Shrutika D. Bansode, Vedant S. Joge, Professor Prachi Tamhan

Abstract-This research presents a comprehensive sentiment analysis system tailored for social media comments, aiming to classify user sentiments into positive, negative, or neutral categories. With Social media’s vast user engagement—over 1 billion unique users generating extensive comment data—there exists a significant opportunity to derive insights into public opinions. This study addresses challenges inherent in analyzing social media comments, including the high volume of data, diverse linguistic expressions, the use of slang, emojis, sarcasm, and the presence of spam. We leverage a constructed annotated corpus comprising 1500 citation sentences, which underwent rigorous data normalization to enhance quality and consistency. Six machine learning algorithms— Naïve Bayes, Support Vector Machine (SVM), Logistic Regression, Decision Tree, K-Nearest Neighbor (KNN), and Random Forest (RF)—were implemented for sentiment classification. The performance of these algorithms was evaluated using various metrics, including F-score and accuracy, demonstrating a correlation between sentiment trends and real-world events associated with specific keywords. This work contributes to the field of sentiment analysis by providing insights that can aid researchers in identifying quality research papers and understanding user attitudes towards video content.

DOI: 10.61137/ijsret.vol.10.issue5.311
55

Published by:
Uncategorized

Fake Profile Identification and Classification Using Machine Learning

Fake Profile Identification and Classification Using Machine Learning/strong>
Authors:-Professor Disha Nagpure (HOD), Professor Shilpa Shide (Guide) Vaishnavi Gaikwad, Vaishnavi Panchal, Vikrant Kothimbire, Vinay Makwana

Abstract-This paper details the design and implementation of Social media platforms are essential for communication today, allowing people to connect, share, and interact. However, the rise of fake profiles on sites like Instagram creates significant challenges related to user privacy, security, and trust. This research proposes a new approach to identify and classify these fake profiles using machine learning techniques. The findings contribute to ongoing efforts to combat fake accounts, promoting a safer and more trustworthy online environment. By leveraging machine learning and a thorough set of features, the model shows promising results in detecting and categorizing fake profiles. This research also opens up opportunities for further exploration, such as integrating different data sources and adapting the model for use on other social media platforms.

DOI: 10.61137/ijsret.vol.10.issue5.310
55

Published by: