

A Review Article on Auto-Categorization of Syslogs Using NLP and Deep Learning

Nisha Verma, Gaurav Nair, Swathi Reddy, Tarun Bhatia Jawaharlal Nehru University (JNU), New Delhi, India

Abstract- In modern IT ecosystems, syslogs serve as the primary diagnostic and auditing trail, capturing granular system-level, application, and security events. As infrastructures grow in scale and complexity spanning cloud-native applications, hybrid UNIX environments, and distributed edge deployments the volume of syslog data has become overwhelming. Traditional rulebased parsing methods and regex-driven filters struggle to scale across heterogeneous logs, leading to missed alerts, alert fatigue, and significant operational overhead. This review explores the transformative role of Natural Language Processing (NLP) and deep learning techniques in auto-categorizing syslogs with accuracy, adaptability, and semantic understanding. The paper begins with an overview of syslog formats, protocols, and the inherent variability in message content and structure. It then introduces modern NLP preprocessing techniques such as tokenization, entity masking, embedding strategies, and contextual vectorization. A detailed examination of deep learning architectures including CNNs, RNNs, LSTMs, and Transformer-based models like BERT is provided to demonstrate their effectiveness in capturing syntactic and contextual nuances. The review also presents methodologies for supervised, semi-supervised, and weakly supervised learning, with practical tools for building ground truth corpora. Operational pipeline considerations such as real-time streaming ingestion, model deployment, latency optimization, and SIEM integration are addressed. Use cases spanning data centers, telecom networks, and security monitoring highlight the practical impact of AI-based syslog categorization. Additionally, the article explores key challenges, including model interpretability, data privacy, false positives, and compliance risks. Future trends such as domain-specific Transformers, self-supervised log learning, federated training, and multi-modal observability are discussed as avenues for further innovation. Ultimately, this review positions NLP and AI as foundational to building scalable, intelligent, and proactive log management systems, paving the way for predictive operations and automated root cause analysis in complex enterprise environments.

Index Terms- Syslog Analysis, Log Categorization, Deep Learning, Natural Language Processing, Transformer Models, Log Classification, Log Anomaly Detection, LSTM, BERT, Log Embeddings, Event Correlation, Log Tokenization, IT Operations Analytics, Real-Time Log Monitoring, AI in Infrastructure

I. INTRODUCTION

1. Importance of Syslog Data in IT Operations

In modern IT ecosystems, syslogs serve as a critical backbone for observability, incident detection, and forensic analysis. They provide timestamped, system-generated records of events, configurations, errors, and status messages from a wide array of devices and services—including servers, network appliances, hypervisors, operating systems, and applications. Syslogs are central to understanding operational health, supporting security auditing, and correlating root causes during incidents. As enterprises adopt hybrid cloud, edge computing, and microservices, the role of syslogs

becomes even more pivotal, providing continuity across fragmented monitoring landscapes.

2. Challenges of Manual Log Triage and Alert Fatigue

Despite their value, the utility of syslogs is often constrained by their volume, inconsistency, and lack of semantic structure. Operations teams are frequently overwhelmed by log floods during peak usage or outages, making it difficult to distinguish critical events from benign noise. Manual triage is slow, errorprone, and does not scale in real-time environments. Additionally, static parsing rules or regex filters fail to adapt to evolving log formats or novel message types. This leads to alert fatigue, missed anomalies, and inefficient use of resources, especially in environments where uptime and security are paramount.

Volume 8, Issue 5, Sept-Oct-2022, ISSN (Online): 2395-566X

3. Role of NLP and Deep Learning in Automated Categorization

Natural Language Processing (NLP), when combined with deep learning techniques, offers a scalable, adaptive solution for understanding and categorizing syslogs. NLP allows unstructured text data to be converted into structured vector representations that machines can interpret. Deep learning models, such as LSTM networks and Transformers, can capture long-range dependencies and contextual meaning within log sequences, enabling accurate classification even for previously unseen messages. These models can learn to differentiate between routine system chatter and high-priority events, improving both signal-to-noise ratio and operational responsiveness. Unlike rule-based approaches, deep NLP solutions generalize across formats, vendors, and domains.

4. Objectives and Scope of the Review

This review aims to provide a comprehensive examination of how NLP and deep learning can be leveraged to automate syslog categorization. It covers the structural anatomy of syslogs, traditional and modern approaches to preprocessing, deep learning architectures suited for log classification, and the design of scalable, real-time inference pipelines. The article also evaluates performance metrics, discusses challenges in implementation such as data labeling and model transparency, and explores practical deployments across industries like telecom, datacenter management, and cybersecurity. Future trends, including self-supervised learning and federated models for distributed log analysis, are also outlined. The review is intended to guide researchers, DevOps engineers, and security analysts in designing intelligent, scalable log monitoring systems that move beyond rule-matching toward cognitive automation.

III. UNDERSTANDING SYSLOGS AND LOGGING STANDARDS

1. Structure and Semantics of Syslog Messages

Syslog messages are semi-structured textual records that consist of both metadata and human-readable event descriptions. Typically, a syslog entry begins with a timestamp, hostname, and severity level, followed by a message body that describes an event or action. While the header follows defined syntax, the message body often lacks standardization, varying across systems, applications, and vendors. This inconsistency presents a major challenge in applying deterministic rules for parsing or understanding logs. Additionally, logs may contain dynamic variables like IP addresses, session IDs, or file paths, which complicate traditional matching and classification techniques.

2. Common Logging Protocols and Facilities

Syslog transmission is standardized under protocols such as RFC 5424, which define message structure and transport

formats. Most systems use either TCP or UDP to forward logs to centralized aggregators. Logs are tagged with facility codes (e.g., kern, auth, daemon, cron) and severity levels ranging from debug to emergency. These indicators help organize logs at a coarse level, but they offer little insight into the nuanced content of the messages. In large environments, logs from thousands of hosts and services flood in simultaneously, requiring advanced parsing techniques for real-time categorization.

3. Typical Error and Event Categories in Enterprise Systems

In enterprise environments, syslog messages typically fall into categories such as authentication events, resource exhaustion, system errors, configuration changes, hardware alerts, and network anomalies. However, the same error code or string can indicate different root causes based on surrounding context. Categorizing logs accurately therefore requires semantic understanding rather than simple string matching. This diversity of meaning reinforces the need for intelligent models that can extract latent patterns from message structure and content.

4. Noise, Redundancy, and the Scale of Log Data

High-volume infrastructures generate enormous quantities of logs, much of which is repetitive or trivial. Debug messages, redundant alerts across redundant systems, and expected events (like regular cron jobs) all contribute to "log noise." Additionally, many logs are duplicated across layers—network events may show up at firewall, OS, and application levels. This redundancy creates challenges in filtering for actionable insights and can lead to alert fatigue. To make sense of logs at this scale, classification models must not only categorize but also prioritize and de-duplicate incoming messages.

IV. OVERVIEW OF NLP TECHNIQUES FOR LOG ANALYSIS

1. Preprocessing Techniques: Tokenization, Normalization, Stop-word Removal

Before feeding syslog messages into any machine learning pipeline, they must be preprocessed into a usable form. Tokenization splits log messages into discrete units (tokens), such as words or phrases. Normalization then standardizes these tokens—by lowercasing text, replacing numerical values with placeholders, or stripping punctuation. Stop-word removal eliminates common words (like "the", "on", "is") that add little meaning but increase noise. These steps transform raw, inconsistent log lines into structured representations, reducing model complexity and improving classification performance.

Volume 8, Issue 5, Sept-Oct-2022, ISSN (Online): 2395-566X

2. Named Entity Recognition (NER) and POS Tagging for Logs

NER techniques identify domain-specific entities in logs such as IP addresses, usernames, or process IDs while POS (Part-of-Speech) tagging reveals grammatical structure. Though syslogs are often terse or fragmented, many still contain identifiable subjects, actions, and objects. NER helps abstract away log-specific values and reduces model overfitting to literal content. For example, tagging "admin logged in from 192.168.1.5" as [USER] logged in from [IP] helps standardize the semantic structure across similar logs from other hosts.

3. Embedding Approaches: TF-IDF, Word2Vec, FastText, BERT

Once logs are tokenized and preprocessed, they are converted into numerical vectors through embedding. TF-IDF emphasizes unique tokens by penalizing frequent ones, but lacks context sensitivity. Word2Vec and FastText learn word relationships by context windows, capturing semantic similarity across terms. More powerful is BERT, which understands both left and right context in a sentence, enabling it to grasp the intent behind a message. For example, BERT embeddings distinguish between "failed login" and "login failed due to policy," improving categorization accuracy.

4. Vectorization and Dimensionality Reduction Methods

Embedded vectors can be high-dimensional, leading to increased computational cost. Dimensionality reduction techniques such as PCA (Principal Component Analysis), t-SNE (t-Distributed Stochastic Neighbor Embedding), or UMAP help preserve meaningful structure while compressing features for model input. These methods ensure that training and inference remain performant even under real-time constraints. Efficient vectorization is especially vital in pipelines where logs must be categorized within milliseconds to trigger automated responses.

V. DEEP LEARNING ARCHITECTURES FOR SYSLOG CATEGORIZATION

1. Recurrent Neural Networks (RNN, LSTM, GRU)

Recurrent Neural Networks (RNNs) are foundational models for sequential data like logs, where the order and context of words matter. However, vanilla RNNs suffer from vanishing gradient problems, making them inefficient for long sequences. Long Short-Term Memory (LSTM) networks solve this by introducing memory gates that can retain long-term dependencies, which is essential for understanding syslogs that span multi-token technical descriptions. Gated Recurrent Units (GRUs) are a computationally lighter variant, suitable for edge environments with limited processing power. These models help recognize patterns such as escalation phrases ("failure detected", "shutdown initiated") that reflect underlying categories.

2. CNNs for Pattern Recognition in Text Logs

While traditionally used in image processing, Convolutional Neural Networks (CNNs) have proven effective for text classification, especially when local patterns are strong indicators of category. In syslogs, repeated motifs such as "connection timeout", "permission denied", or "kernel panic" can be detected through n-gram-like convolutions. CNNs slide filters over log embeddings to extract local dependencies, offering high-speed inference. They are particularly well-suited for identifying short, repetitive error messages in large-scale logging systems.

3. Transformers and Attention Mechanisms

Transformers have revolutionized NLP by removing the limitations of sequential processing. Their attention mechanisms allow the model to weigh the importance of each token relative to the rest, enabling deeper contextual understanding. In syslog classification, Transformers such as BERT, RoBERTa, and DistilBERT can capture nuanced meanings in complex messages and outperform traditional models in accuracy. Attention maps can even provide explainability by showing which tokens influenced the categorization most.

4. Hybrid Deep NLP Models

To balance speed, accuracy, and context, hybrid models combining CNNs for local pattern detection and LSTMs or Transformers for sequence understanding have emerged. These architectures can process logs with both repetitive patterns and contextual dependencies. Additionally, attention layers can be added to RNN-based models to enhance interpretability and focus on relevant parts of a message. Hybrid models offer a powerful middle ground for production-scale log categorization systems.

VI. LOG LABELING, CLASSIFICATION, AND GROUND TRUTH CONSTRUCTION

1. Taxonomy of Syslog Categories

Developing a consistent taxonomy is critical for supervised learning. Syslog categories may include authentication issues, hardware failures, software crashes, performance warnings, informational notices, and configuration changes. These categories must be tailored to the specific operational context—such as data centers, cloud platforms, or telecom environments—and aligned with incident response protocols. A clear taxonomy ensures reliable model training and deployment.

2. Supervised vs. Semi-Supervised Classification

Supervised classification requires large volumes of labeled data, which is often scarce in real-world logging environments. Semi-supervised approaches bridge this gap by using a small set of labeled logs to guide learning from

International Journal of Scientific Research & Engineering Trends

Volume 8, Issue 5, Sept-Oct-2022, ISSN (Online): 2395-566X

unlabeled ones. Techniques like pseudo-labeling, self-training, and co-training help improve coverage. In many deployments, combining rule-based initial tagging with deep learning refinement yields scalable and accurate categorization pipelines.

3. Data Augmentation and Balancing Techniques

Real-world log datasets are often imbalanced, with benign or repetitive messages outnumbering rare but critical alerts. To counter this, data augmentation techniques like synonym replacement, log paraphrasing, and adversarial rewording can enrich underrepresented classes. Additionally, synthetic log generation using language models like GPT can boost training diversity. Oversampling and cost-sensitive loss functions can also be applied to ensure that minority classes receive appropriate attention during training.

4. Tools and Frameworks for Label Management

Labeling logs at scale requires specialized tools. Frameworks like Snorkel enable weak supervision through labeling functions, while platforms like Prodigy, Label Studio, and Amazon SageMaker Ground Truth offer annotation interfaces with human-in-the-loop support. For operational integrity, labels should be version-controlled and traceable. Incorporating domain expert validation improves reliability and fosters trust in model predictions, especially in sensitive sectors like finance or healthcare.

VII. PIPELINE ARCHITECTURE FOR REAL-TIME AUTO-CATEGORIZATION

1. Streaming Ingestion with Fluentd, Logstash, or Kafka

Real-time syslog categorization begins with log ingestion. Fluentd and Logstash are widely used for collecting, parsing, and forwarding logs, while Kafka offers durable, high-throughput stream processing. These tools form the backbone of the pipeline, feeding preprocessed logs into downstream machine learning inference engines. In a typical setup, logs are ingested from servers, routers, or applications, enriched with metadata, and queued for categorization.

2. Model Deployment Using TensorFlow Serving or ONNX Once trained, deep learning models must be deployed for production inference. TensorFlow Serving and ONNX Runtime allow for efficient, scalable model serving across various environments. These tools support REST and gRPC APIs, enabling microservices to query models with log messages and receive categorical predictions in real-time. Model versioning and A/B testing can also be integrated to ensure stability during upgrades or retraining.

3. Latency Considerations and Asynchronous Inference

In high-volume environments, low-latency inference is crucial. Categorization should occur within milliseconds to

support real-time alerting and automated incident response. To minimize blocking, asynchronous processing models using message queues or reactive programming patterns can be employed. Edge inferencing with optimized models like DistilBERT or TinyBERT is also gaining traction, especially in latency-sensitive environments such as edge computing or IoT deployments.

4. Integration with SIEM and Monitoring Platforms

The final stage of the pipeline connects categorized logs to downstream systems like SIEM (Security Information and Event Management), APM (Application Performance Monitoring), or ITSM (IT Service Management) platforms. Categorization results can trigger alert thresholds, enrich dashboards, or feed incident response workflows. Integration with tools like Splunk, ELK Stack, or Prometheus enables unified observability, while structured classification improves correlation, deduplication, and prioritization of alerts.

VIII. EVALUATION METRICS AND MODEL VALIDATION

1. Precision, Recall, F1-Score, ROC-AUC

Evaluating the effectiveness of syslog classification models requires more than just accuracy. Precision measures how many of the logs predicted to be in a category are actually relevant, while recall indicates how many of the actual relevant logs were correctly identified. The F1-score balances these two metrics and is particularly useful when dealing with imbalanced classes, which are common in syslog datasets where rare but critical events must be caught. ROC-AUC (Receiver Operating Characteristic - Area Under Curve) is also a powerful metric in binary and multi-class settings, representing the model's ability to distinguish between classes across different thresholds.

2. Confusion Matrix Interpretation for Multi-Class Categorization

A confusion matrix provides a detailed view of model performance by illustrating where misclassifications occur. In multi-class syslog categorization, confusion matrices can reveal which categories are being conflated—for instance, security warnings misclassified as performance issues. This insight helps fine-tune class definitions, preprocessing steps, or the model architecture itself. Regular review of confusion matrices during model validation cycles is essential for improving reliability, especially in production pipelines where downstream automation depends on correct categorization.

3. Cross-Validation and Drift Detection in Log Streams

Cross-validation ensures that the model generalizes well across various segments of the data. For syslogs, time-based cross-validation is often preferred to mimic the progression of log behavior over time. More importantly, model performance

International Journal of Scientific Research & Engineering Trends

Volume 8, Issue 5, Sept-Oct-2022, ISSN (Online): 2395-566X

can degrade due to data drift—when log formats or operational behaviors change. Drift detection tools can monitor distributional changes in incoming data, triggering model retraining or human-in-the-loop inspection. Incorporating drift-aware pipelines helps maintain classification accuracy over time.

4. Benchmarking Against Rule-Based Systems

Many organizations already use rule-based filters or regex scripts to triage logs. Comparing AI-based classifiers to these traditional methods offers tangible proof of benefit. While rules may offer high precision for known patterns, they lack recall and adaptability. AI models, though requiring upfront training, can learn from evolving logs and outperform rules in both breadth and speed. Benchmarking enables organizations to justify transition costs and define hybrid deployment strategies where AI models augment rather than replace static rules.

IX. USE CASES AND IMPLEMENTATION SCENARIOS

1. Datacenter Ops: Fault Isolation and RCA

In modern datacenters, thousands of devices continuously emit logs related to cooling systems, power supplies, hypervisors, and networking fabric. AI-based log categorization allows teams to detect fault signatures early, group them into actionable categories, and correlate events across nodes. This supports faster root cause analysis (RCA) and avoids cascading failures. Categorized logs also help prioritize tickets based on severity or service impact, improving Mean Time to Resolution (MTTR).

2. Cloud Infrastructure: Alert Prioritization in Multi-Tenant Logs

Public cloud platforms host multiple tenants on shared infrastructure, leading to complex, noisy log environments. Categorizing syslogs in real time enables cloud providers to flag high-risk events like cross-tenant access anomalies or unexpected traffic patterns. AI-driven classification adds contextual awareness by combining log content with metadata such as tenant ID, resource type, and region. This supports granular alert prioritization and tenant-level SLA compliance.

3. Telecom and 5G: Categorizing Distributed Edge Logs

Telecom providers deploying 5G infrastructure face the challenge of collecting and analyzing logs from thousands of edge nodes. These logs vary by vendor, device, and radio conditions. AI-powered categorization helps standardize these diverse logs, detecting issues like radio link failures, handover instability, or protocol mismatches. Local inference at the edge ensures low-latency triage, while centralized models can refine predictions using global patterns and feedback loops. 9.4 Security: Detecting Malicious or Anomalous Categories

In the security domain, NLP-based syslog classification supports anomaly detection by flagging suspicious or policyviolating messages. For example, failed logins, unauthorized privilege escalations, or unusual port activity can be grouped under high-risk categories and correlated with threat intelligence. Unlike static rules, deep learning models can learn attack variations and zero-day indicators. This categorization enables quicker containment, enriches SIEM alerts, and informs behavioral threat models.

Challenges, Limitations, and Ethical Considerations False Positives and Misclassification Risks

One of the critical challenges in deploying AI-based categorization is managing false positives. Misclassifying benign logs as critical can overwhelm operators and erode trust in the system. On the other hand, false negatives—missing genuinely important logs—can lead to service outages or security breaches. Achieving a balance requires not only accurate models but also post-processing layers like threshold tuning, ensemble voting, or human-in-the-loop validation.

Interpretability and Model Transparency

Deep learning models, especially those based on Transformers, are often black-box systems. This makes it difficult for operators to understand why a particular log was categorized in a certain way. Techniques such as attention heatmaps, SHAP (SHapley Additive exPlanations), and LIME (Local Interpretable Model-Agnostic Explanations) can provide insights into model behavior. Increasing interpretability is essential in regulated environments and in gaining operational team confidence.

Data Privacy in Log Content

Syslogs may contain sensitive data, including usernames, IP addresses, and error strings that reveal internal infrastructure. Training AI models on such data raises privacy and compliance concerns, particularly under frameworks like GDPR or HIPAA. Anonymization techniques must be applied before log ingestion. Furthermore, models should be auditable and tested against data leakage to prevent inadvertent exposure of private information during inference or training.

Human-in-the-Loop Oversight and Confidence Scores

While AI offers automation, human oversight remains critical. Systems should provide confidence scores with each prediction and flag ambiguous messages for manual review. This hybrid approach ensures that decisions affecting availability or security are not made solely by an algorithm. Feedback from operators can also be used to retrain models, improve accuracy, and adapt to emerging log patterns. Establishing feedback loops and governance policies ensures responsible AI usage in syslog categorization.

International Journal of Scientific Research & Engineering Trends

Volume 8, Issue 5, Sept-Oct-2022, ISSN (Online): 2395-566X

Future Trends and Research Directions Transformer-Based Models Tailored for Syslog Contexts

While general-purpose models like BERT have achieved success in log categorization, the future lies in fine-tuned Transformer models specifically trained on syslog corpora. Domain-specific pretraining on logs across OS types (Linux, Solaris, AIX), network equipment, and application stacks could yield a "LogBERT" or "SyslogGPT" capable of capturing low-level event semantics and high-level operational context. These models would better understand technical abbreviations, vendor-specific terminology, and log formatting quirks, dramatically improving classification accuracy and anomaly detection.

Self-Supervised and Continual Learning for Log Intelligence

Emerging trends in self-supervised learning allow models to learn from unlabeled data by solving proxy tasks such as next-token prediction, masked token reconstruction, or log sequencing. When combined with continual learning strategies, models can evolve over time without forgetting older patterns a vital capability for syslog environments that regularly change due to updates, patches, and configuration drift. This would reduce reliance on expensive manual labeling and enable always-on learning pipelines for log understanding.

Multi-Modal Correlation Across Logs, Metrics, and Traces Future architectures will move beyond log-only inputs. By fusing logs with metrics (e.g., CPU load, memory usage), traces (e.g., OpenTelemetry spans), and config snapshots, models can achieve cross-modal intelligence. For instance, a spike in latency accompanied by error logs from several services may indicate a network-level fault. Integrating this contextual awareness allows syslog categorization models to drive smarter root cause analysis, performance triage, and SLA enforcement.

Federated Learning for Cross-Enterprise Log Models

Organizations are often reluctant to share log data due to privacy, compliance, or IP concerns. Federated learning enables training global models without centralizing raw data. Edge models can be trained on-premise and share only updates with an orchestrator. In syslog analysis, federated learning can help build highly generalized classifiers across industries such as healthcare, telecom, and finance while preserving data sovereignty.

X. CONCLUSION

The auto-categorization of syslogs using NLP and deep learning is a pivotal advancement in modern IT operations, enabling organizations to move from reactive incident response to proactive log intelligence. Traditional log monitoring methods, while effective for static patterns, fall

short in handling the scale, diversity, and dynamism of modern syslog data. Deep learning, particularly through Transformer architectures and hybrid NLP pipelines, offers robust solutions for parsing, understanding, and classifying log messages in real time.

This review has explored the various stages of building such intelligent pipelines, from log preprocessing and tokenization to model training, evaluation, and deployment. The combination of contextual embeddings, attention mechanisms, and model explainability techniques positions deep learning as a sustainable solution to log overload and operational noise. Furthermore, integration with SIEM, observability stacks, and ITSM systems bridges the gap between classification and actionable response.

However, challenges such as false positives, interpretability, and data privacy remain critical to address. Human-in-the-loop frameworks and continuous feedback cycles can enhance system resilience and adaptability. As the field evolves, self-supervised learning, federated training, and multi-modal analysis are expected to shape the next generation of log intelligence.

REFERENCES

- 1. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., Laroussilhe, Q.D., Gesmundo, A., Attariyan, M., & Gelly, S. (2019). Parameter-Efficient Transfer Learning for NLP. ArXiv, abs/1902.00751.
- 2. Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and Policy Considerations for Deep Learning in NLP. ArXiv, abs/1906.02243.
- 3. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kuttler, H., Lewis, M., Yih, W., Rocktäschel, T., Riedel, S., & Kiela, D. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. ArXiv, abs/2005.11401.
- 4. Ribeiro, M., Wu, T.S., Guestrin, C., & Singh, S. (2020). Beyond Accuracy: Behavioral Testing of NLP Models with CheckList. Annual Meeting of the Association for Computational Linguistics.
- 5. Blodgett, S., Barocas, S., Daum'e, H., & Wallach, H.M. (2020). Language (Technology) is Power: A Critical Survey of "Bias" in NLP. ArXiv, abs/2005.14050.
- 6. Joshi, P.M., Santy, S., Budhiraja, A., Bali, K., & Choudhury, M. (2020). The State and Fate of Linguistic Diversity and Inclusion in the NLP World. Annual Meeting of the Association for Computational Linguistics.
- 7. Jacovi, A., & Goldberg, Y. (2020). Towards Faithfully Interpretable NLP Systems: How Should We Define and Evaluate Faithfulness? Annual Meeting of the Association for Computational Linguistics.

Volume 8, Issue 5, Sept-Oct-2022, ISSN (Online): 2395-566X

- 8. Tenney, I., Das, D., & Pavlick, E. (2019). BERT Rediscovers the Classical NLP Pipeline. Annual Meeting of the Association for Computational Linguistics.
- 9. Battula, V. (2021). Dynamic resource allocation in Solaris/Linux hybrid environments using real-time monitoring and AI-based load balancing. International Journal of Engineering Technology Research & Management, 5(11), 81–89. https://ijetrm.com
- 10. Madamanchi, S. R. (2021). Disaster recovery planning for hybrid Solaris and Linux infrastructures. International Journal of Scientific Research & Engineering Trends, 7(6), 01–08.
- 11. Madamanchi, S. R. (2021). Linux server monitoring and uptime optimization in healthcare IT: Review of Nagios, Zabbix, and custom scripts. International Journal of Science, Engineering and Technology, 9(6), 01–08.
- 12. Madamanchi, S. R. (2021). Mastering enterprise Unix/Linux systems: Architecture, automation, and migration for modern IT infrastructures. Ambisphere Publications.
- 13. Mulpuri, R. (2021). Command-line and scripting approaches to monitor bioinformatics pipelines: A systems administration perspective. International Journal of Trend in Research and Development, 8(6), 466–470.
- 14. Mulpuri, R. (2021). Securing electronic health records: A review of Unix-based server hardening and compliance strategies. International Journal of Research and Analytical Reviews, 8(1), 308–315.
- 15. Kang, Y., Cai, Z., Tan, C., Huang, Q., & Liu, H. (2020). Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics.
- 16. Akbik, A., Bergmann, T., Blythe, D.A., Rasul, K., Schweter, S., & Vollgraf, R. (2019). FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP. North American Chapter of the Association for Computational Linguistics.
- 17. Hutchinson, B., Prabhakaran, V., Denton, E.L., Webster, K., Zhong, Y., & Denuyl, S. (2020). Social Biases in NLP Models as Barriers for Persons with Disabilities. ArXiv, abs/2005.00813.
- DeYoung, J., Jain, S., Rajani, N., Lehman, E.P., Xiong, C., Socher, R., & Wallace, B.C. (2019). ERASER: A Benchmark to Evaluate Rationalized NLP Models. Annual Meeting of the Association for Computational Linguistics.
- 19. Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., & Li, J. (2019). Dice Loss for Data-imbalanced NLP Tasks. ArXiv, abs/1911.02855.