

© 2016 IJSRET
1

International Journal of Scientific Research & Engineering Trends
Volume 2, Issue 6, Nov-Dec-2016, ISSN (Online): 2395-566X

Optimizing Performance in Qlikview: Essential Tips and

Tricks for Faster, More Responsive Dashboards
Leela Sundari

Nandini Arts College

Abstract - Optimizing performance in QlikView dashboards is critical for ensuring fast, responsive, and actionable business

intelligence. As organizations increasingly rely on interactive and data-driven decision-making, performance bottlenecks due to

large datasets, complex calculations, and suboptimal dashboard design can hinder operational efficiency and user adoption. This

review article examines essential strategies and techniques for enhancing QlikView performance, focusing on data modeling,

dashboard design, scripting optimization, server tuning, and advanced analytical integration. Key areas include implementing

star and snowflake schemas, managing synthetic keys and circular references, leveraging QVDs and incremental loading, and

optimizing expressions using set analysis and pre-aggregated measures. Additionally, server and environment considerations—

such as memory allocation, load balancing, multi-threading, and monitoring—are discussed to maintain responsiveness under

high concurrency. The article also highlights industry-specific applications in finance, healthcare, and retail, demonstrating

practical implementation of optimization strategies in real-world scenarios. Emerging trends, including AI-assisted performance

tuning, cloud and hybrid deployments, real-time analytics, and integration with advanced predictive and prescriptive analytics

tools, are explored to illustrate the evolving landscape of QlikView performance management. By adopting these best practices,

organizations can ensure that dashboards remain scalable, accurate, and efficient, enabling users to derive actionable insights

quickly. This comprehensive review serves as a practical guide for BI developers, architects, and enterprise decision-makers

seeking to maintain high-performance QlikView environments and maximize the value of their data-driven initiatives.

Keywords - QlikView, Performance Optimization, Dashboard Responsiveness, Data Modeling, QVD, Incremental Loading, Set

Analysis, Server Tuning, Cloud BI, Real-Time Analytics, Multi-Threading, Business Intelligence, ETL, Advanced Analytics.

INTRODUCTION

Evolution of QlikView and Performance Concerns

QlikView has emerged as one of the pioneering Business

Intelligence (BI) platforms, known for its associative in-

memory data model and interactive dashboards. Over the

years, it has evolved from basic reporting tools into

sophisticated analytics engines capable of handling

complex enterprise data. However, as datasets grew in

volume and complexity, performance challenges became

increasingly significant. Large transactional datasets,

multiple concurrent users, and complex calculations often

led to slow dashboard rendering and delayed insights.

These performance bottlenecks can undermine user

adoption, reduce trust in the BI platform, and affect timely

decision-making. Maintaining fast, responsive

dashboards is critical not only for operational efficiency

but also for strategic analytics, as stakeholders rely on

QlikView to visualize real-time metrics and trends.

Importance of Performance Optimization

Performance optimization in QlikView directly impacts the

overall effectiveness of the BI solution. Slow dashboards

can result in lost productivity, delayed reporting, and

increased server load, which further exacerbates

performance issues. Optimized dashboards, in contrast,

enable faster data exploration, provide smoother

interactivity, and enhance user satisfaction. Optimization

strategies reduce memory consumption, improve reload

times, and ensure consistent performance even with high

concurrency. A well-tuned QlikView environment

supports scalable deployment, fosters better decision-

making, and encourages broader adoption across

organizational teams.

Objectives of the Review

This review focuses on practical tips, best practices, and

advanced techniques to optimize QlikView dashboards. It

covers data modeling strategies, scripting approaches,

server and infrastructure tuning, and advanced

calculation optimization. The target audience includes BI

© 2016 IJSRET
2

International Journal of Scientific Research & Engineering Trends
Volume 2, Issue 6, Nov-Dec-2016, ISSN (Online): 2395-566X

developers, architects, and enterprise decision-makers

who aim to enhance dashboard responsiveness, ensure

scalability, and deliver actionable insights efficiently

across large-scale deployments.

II. QLIKVIEW ARCHITECTURE AND

PERFORMANCE FACTORS

In-Memory Associative Model

QlikView’s core strength lies in its in-memory associative

data model, which allows users to explore relationships

across datasets instantly. Unlike traditional query-based

BI tools, QlikView loads data into RAM, enabling rapid

calculations and dynamic filtering. While this approach

significantly enhances speed, it also has implications for

memory usage. Efficient data modeling and selective data

loading are critical to prevent memory bottlenecks,

particularly in large deployments with millions of records.

Understanding how the engine processes associations,

synthetic keys, and aggregations is essential for

performance tuning.

Data Load and Storage Considerations

Memory management is a crucial factor in QlikView

performance. Techniques such as QVD utilization,

incremental loading, and optimized script design help

reduce reload times and memory consumption. QVDs

store pre-processed data in a highly efficient format,

reducing redundant computations and disk I/O.

Additionally, careful planning of data extraction,

transformation, and loading (ETL) processes ensures that

only relevant fields and records are loaded into memory,

enhancing responsiveness for end users.

Dashboard Rendering and Calculation Engine

Dashboard performance is influenced by how objects,

charts, and expressions are rendered. Complex

expressions, nested calculations, or excessive objects per

sheet can slow response times. The calculation engine,

responsible for aggregating data in real time, must

balance accuracy with efficiency. Leveraging caching

mechanisms and pre-aggregated measures can reduce

repeated calculations, resulting in faster rendering and

improved user experience.

III. DATA MODELING TECHNIQUES FOR

PERFORMANCE

Star and Snowflake Schemas

Data modeling is a cornerstone of QlikView performance.

Choosing the right schema directly impacts query speed,

memory consumption, and dashboard responsiveness.

Star schemas, featuring a central fact table linked to

denormalized dimension tables, are ideal for simple and

high-performance reporting. They minimize the number

of joins required for analysis, enabling rapid aggregations

and reducing memory overhead. Snowflake schemas, on

the other hand, normalize dimensions into multiple

related tables, which can save storage and reduce data

redundancy but may introduce additional joins and

computational complexity. For large enterprise datasets,

balancing the simplicity of star schemas with the

normalized benefits of snowflake structures is essential to

optimize both performance and analytical depth. Proper

schema selection ensures that QlikView’s in-memory

engine can efficiently calculate aggregations while

maintaining the flexibility to explore complex

relationships among datasets.

Synthetic Keys and Circular References

Synthetic keys and circular references occur when

multiple tables share overlapping fields, causing the

associative engine to generate automatic links that may

introduce ambiguity and degrade performance.

Identifying these scenarios early is critical. Techniques

such as renaming fields to prevent unintentional

associations, creating link tables to manage relationships

explicitly, or restructuring data hierarchies can resolve

conflicts. Efficient handling of synthetic keys reduces

memory consumption and ensures accurate calculations,

enabling dashboards to respond faster even under high

load conditions.

© 2016 IJSRET
3

International Journal of Scientific Research & Engineering Trends
Volume 2, Issue 6, Nov-Dec-2016, ISSN (Online): 2395-566X

Optimized Data Load Scripts

Script optimization is another essential factor for

performance. Incremental loading strategies process only

new or changed records rather than reloading entire

datasets, significantly reducing load times. Using QVDs

for intermediate storage allows pre-processed data to be

reused efficiently, minimizing redundant transformations.

Avoiding unnecessary joins, modularizing scripts, and

pre-aggregating measures also contribute to faster

reloads and lower memory consumption. Combined,

these modeling and scripting practices form the

foundation for high-performing QlikView dashboards

that scale effectively with enterprise data volumes.

IV. DASHBOARD DESIGN BEST PRACTICES

Object Minimization and Layout Optimization

Dashboard design directly affects perceived and actual

performance. Reducing the number of objects per sheet

prevents overloading the calculation engine and limits

memory usage. Grouping related visualizations into tabs

or container objects allows users to navigate dashboards

efficiently while keeping object rendering optimized.

Thoughtful layout strategies, including prioritizing critical

metrics and strategically arranging charts, reduce clutter

and improve the speed of user interactions.

Expression and Calculation Optimization

Complex or nested expressions can slow dashboards,

particularly when multiple objects reference the same

calculations. Optimizing expressions through variables,

set analysis, and pre-aggregated data improves response

times. Pre-calculating frequently used measures or

storing them in QVDs allows the engine to retrieve results

rapidly rather than recalculating dynamically, enhancing

dashboard interactivity.

Conditional Loading and Visualization Techniques

Conditional loading ensures that objects are processed

and rendered only when required, reducing unnecessary

calculations. Leveraging alternate states and dynamic

calculations allows users to explore different analytical

scenarios without imposing a constant computational

load. Additionally, employing lightweight visualizations,

avoiding excessive real-time charts, and utilizing caching

strategies further improve dashboard performance.

Collectively, these design principles help maintain a

balance between rich interactivity and high

responsiveness, ensuring that users experience fast,

reliable dashboards even in complex enterprise

environments.

Server and Environment Tuning

QlikView Server Settings

Optimizing server settings is fundamental to ensuring

high-performance dashboards in QlikView. Load

balancing across multiple nodes allows concurrent users

to access dashboards without latency issues, while proper

session management ensures efficient allocation of

resources. Memory allocation must be tuned according to

dataset size, with sufficient RAM reserved for in-memory

processing. Processor optimization is equally important,

as QlikView’s calculation engine relies heavily on CPU

resources for aggregations and interactive operations.

Scheduled reloads should be strategically timed to avoid

peak usage periods, reducing contention and improving

overall responsiveness.

Network and Infrastructure Considerations

Network latency can significantly impact dashboard

performance, particularly for distributed or remote users.

Optimizing network throughput and reducing

bottlenecks ensures that data is transmitted efficiently.

Virtualization and cloud-based deployment strategies can

help scale infrastructure dynamically, providing additional

resources when required. Proper hardware sizing,

including CPU, memory, and disk I/O, plays a vital role in

maintaining consistent dashboard responsiveness, even

during high concurrency.

Monitoring and Troubleshooting

Continuous monitoring is essential to maintain server

performance. Tools like the QlikView Governance

Dashboard (QGD) and server logs enable administrators

to identify bottlenecks, monitor resource utilization, and

detect anomalies. Proactive troubleshooting and tuning

allow organizations to address issues before they impact

users, ensuring stable, high-performing environments.

© 2016 IJSRET
4

International Journal of Scientific Research & Engineering Trends
Volume 2, Issue 6, Nov-Dec-2016, ISSN (Online): 2395-566X

Advanced Performance Optimization Techniques

Using QVDs and Data Layering

QVDs are pre-processed data files that significantly

reduce reload times and calculation overhead. Layered

data architecture, separating raw, transformed, and

aggregated datasets, allows incremental updates and

efficient memory usage, improving overall dashboard

responsiveness.

Set Analysis and Aggregation Optimization

Optimizing set analysis expressions reduces

computational load on the calculation engine. Pre-

aggregating frequently used measures and limiting

complex nested calculations ensure that dashboards

render faster, even when handling large datasets.

Multi-Threading and Parallel Processing

QlikView supports multi-threaded reloads and parallel

processing of independent scripts or objects. Leveraging

these capabilities allows multiple datasets or calculations

to be processed simultaneously, improving server

utilization, reducing reload times, and enhancing user

experience during peak usage periods.

Industry Applications and Case Studies

Finance and Banking

In the finance and banking sector, QlikView dashboards

must handle large volumes of transactional data while

providing real-time insights into portfolio performance,

risk exposure, and compliance metrics. Performance

optimization techniques such as star schemas,

incremental loading, and pre-aggregated measures are

critical to maintaining fast query responses and

interactive dashboards. Optimized set analysis

expressions allow analysts to perform complex

calculations, such as scenario comparisons or multi-

period aggregations, without degrading performance.

Case studies have shown that banks leveraging these

optimization strategies achieve faster reporting cycles,

improved decision-making, and reduced server load

during peak trading hours. Additionally, multi-threading

and parallel reloads allow financial institutions to handle

multiple datasets simultaneously, ensuring that

operational and strategic dashboards remain responsive

even with high concurrency.

Healthcare and Pharmaceuticals

Healthcare organizations and pharmaceutical companies

rely on QlikView for patient analytics, operational

efficiency, and clinical trial monitoring. Dashboards often

integrate data from electronic health records, lab systems,

and research databases, creating complex data models.

Performance tuning, including QVD layering, conditional

object loading, and optimized calculation scripts, ensures

dashboards render rapidly while maintaining accuracy.

Efficient ETL processes reduce reload times, enabling

near-real-time reporting for patient care and research

decision-making. Optimized dashboards help healthcare

providers track operational metrics, monitor patient

outcomes, and identify trends without being constrained

by slow response times.

Retail and Supply Chain

In retail and supply chain management, QlikView

dashboards track sales, inventory, demand forecasting,

and logistics metrics. Optimized data modeling,

incremental loading, and server tuning ensure that

dashboards remain responsive even with large-scale

transactional data and multiple concurrent users. Retailers

benefit from faster insights into inventory movements,

sales trends, and supply chain bottlenecks. Performance-

optimized dashboards allow decision-makers to react

quickly to market changes, adjust inventory, and improve

demand planning accuracy. Case studies indicate that

organizations implementing these best practices

experience enhanced operational efficiency, improved

planning accuracy, and higher user adoption rates.

Common Challenges and Mitigation Strategies

Performance Degradation due to Large Datasets

One of the most frequent challenges in QlikView

deployments is performance degradation caused by large

and complex datasets. As the volume of data grows,

memory consumption increases, and reload times

lengthen, leading to slow dashboard rendering. Complex

calculations, nested expressions, and multiple associative

links further strain the in-memory engine. To mitigate

© 2016 IJSRET
5

International Journal of Scientific Research & Engineering Trends
Volume 2, Issue 6, Nov-Dec-2016, ISSN (Online): 2395-566X

these issues, organizations should adopt incremental

loading strategies, utilize QVDs to store pre-processed

datasets, and implement layered data architecture to

separate raw, transformed, and aggregated data. These

techniques reduce unnecessary computations and

enhance both reload and runtime performance, allowing

dashboards to handle high-volume data efficiently.

Model Complexity and Data Quality Issues

Complex data models with multiple joins, synthetic keys,

or circular references can significantly reduce dashboard

responsiveness. Additionally, inconsistent or incomplete

data can result in errors, incorrect calculations, or

misleading insights. To address these challenges, careful

data modeling is required, including field renaming, use

of link tables, and normalization where appropriate.

Implementing robust ETL processes with validation

checks ensures high data quality, reducing errors during

reloads and improving calculation accuracy.

Governance and User Adoption Challenges

Ensuring consistent optimization requires governance

frameworks and training programs. Without standardized

best practices, dashboards may be designed

inconsistently, leading to performance bottlenecks.

Governance practices such as code reviews, design

guidelines, and monitoring usage patterns help maintain

high-performing dashboards across the organization.

User training ensures that developers understand how to

optimize expressions, design efficient visualizations, and

manage server resources effectively.

Technical Mitigation Strategies

Technical strategies include optimizing server

configurations, implementing caching mechanisms,

balancing loads across multiple nodes, and leveraging

multi-threading for parallel reloads. Conditional object

loading, dynamic calculations, and efficient use of

variables further reduce runtime computation. Combined,

these mitigation strategies ensure dashboards remain

fast, responsive, and scalable, even under heavy data

volumes and concurrent user access, enabling

organizations to deliver actionable insights reliably.

Best Practices Summary

Efficient Data Modeling

Effective data modeling forms the foundation of high-

performance QlikView dashboards. Implementing star or

snowflake schemas strategically ensures quick query

response while balancing storage efficiency and analytical

depth. Addressing synthetic keys and circular references

through link tables, field renaming, or modularized data

structures prevents performance degradation. Utilizing

QVDs for storing pre-processed datasets and layered data

architectures allows incremental loading and reduces

redundant computations, significantly improving reload

times. A carefully designed model ensures that the

associative engine operates efficiently, delivering fast,

accurate results for end users.

Optimized Dashboard Design

Dashboard design directly impacts perceived

responsiveness. Minimizing the number of objects per

sheet, using container objects, and organizing tabs

strategically reduces calculation load. Optimizing

expressions with variables, set analysis, and pre-

aggregated measures prevents complex calculations from

slowing interactivity. Conditional object loading ensures

that visualizations render only when needed, enhancing

responsiveness. Thoughtful use of lightweight

visualizations, caching, and dynamic calculations ensures

a balance between rich interactivity and performance,

improving both user experience and adoption.

Scripting and ETL Optimization

Optimized scripts are essential for efficient data

processing. Incremental loading, modular scripts, and

pre-aggregation of frequently used measures reduce

server load and memory consumption. Efficient ETL

processes, combined with rigorous data validation,

improve data quality and ensure faster reloads. Proper

scripting practices reduce bottlenecks during scheduled

refreshes, particularly for large datasets, enabling

dashboards to remain responsive and scalable.

Server and Environment Tuning

Server settings, load balancing, and memory allocation

must be continuously monitored and tuned to maintain

© 2016 IJSRET
6

International Journal of Scientific Research & Engineering Trends
Volume 2, Issue 6, Nov-Dec-2016, ISSN (Online): 2395-566X

high performance. Leveraging multi-threading, parallel

processing, and distributed node architectures optimizes

server utilization. Regular monitoring with tools like

QlikView Governance Dashboard (QGD) helps identify

bottlenecks, enforce governance, and maintain consistent

performance.

Future Trends in QlikView Performance Optimization

AI-Assisted Performance Tuning

Artificial intelligence and machine learning are poised to

transform QlikView performance management. AI-

assisted tools can automatically analyze dashboards,

detect bottlenecks, and suggest script optimizations. For

example, intelligent recommendations may highlight

inefficient expressions, identify high-load objects, or

suggest pre-aggregation strategies for frequently used

metrics. This reduces the dependency on manual tuning,

accelerates deployment timelines, and ensures consistent

performance across complex dashboards. AI-driven

optimization can also predict potential performance

issues based on historical usage patterns, enabling

proactive intervention before end users experience

slowdowns.

Cloud and Hybrid Deployments

The migration of QlikView to cloud and hybrid

environments is reshaping performance considerations.

Cloud platforms provide elastic computing resources,

allowing memory and processing power to scale

dynamically based on user demand. Hybrid deployments

enable organizations to combine on-premises servers

with cloud infrastructure, balancing cost, compliance, and

performance needs. These architectures also facilitate

high concurrency, disaster recovery, and geographically

distributed access, ensuring that dashboards remain

responsive for global teams. Cloud caching, auto-scaling,

and distributed data processing further enhance

performance, particularly for large-scale or multi-user

analytics.

Real-Time and Streaming Analytics

The demand for real-time analytics is increasing across

industries, requiring dashboards to handle live streaming

data efficiently. Integration with platforms like Kafka,

Kinesis, or Pub/Sub allows QlikView to process event-

driven data and update dashboards dynamically.

Optimizing these streaming pipelines, coupled with in-

memory associative processing, ensures users receive up-

to-date insights without performance degradation.

Integration with Advanced Analytics and AI

QlikView is increasingly integrated with R, Python, and

AI/ML platforms for predictive and prescriptive analytics.

As advanced analytics calculations become more

complex, performance optimization strategies will need

to focus on offloading computation, caching intermediate

results, and leveraging multi-threading to maintain

dashboard responsiveness.

V. CONCLUSION

QlikView performance optimization is a multifaceted

process that encompasses efficient data modeling,

dashboard design, scripting, server tuning, and advanced

analytics integration. By employing star and snowflake

schemas, managing synthetic keys, and leveraging QVDs

and incremental loading, organizations can reduce

memory consumption and accelerate reload times.

Optimized dashboard design—including minimized

objects, efficient expressions, and conditional loading—

ensures responsive and user-friendly interfaces.

Additionally, server and environment tuning, such as load

balancing, memory allocation, multi-threading, and

monitoring with tools like QlikView Governance

Dashboard, maintains high performance under large data

volumes and concurrent user access.

Fast and responsive dashboards are critical for end-user

adoption and operational efficiency. Optimized QlikView

deployments allow users to interact with data seamlessly,

perform complex analyses in real-time, and derive

actionable insights without frustration or delay. This

capability is especially vital in industries such as finance,

healthcare, and retail, where timely decisions can impact

revenue, patient outcomes, and supply chain efficiency.

Developers should adopt a holistic approach to

performance optimization, integrating best practices

across modeling, ETL scripting, and visualization.

© 2016 IJSRET
7

International Journal of Scientific Research & Engineering Trends
Volume 2, Issue 6, Nov-Dec-2016, ISSN (Online): 2395-566X

Decision-makers must prioritize infrastructure planning,

governance, and training to ensure sustainable, high-

performing deployments. As QlikView evolves, embracing

AI-assisted tuning, cloud and hybrid architectures, and

real-time analytics will be essential to maintain

competitiveness and scalability.

In conclusion, performance optimization in QlikView is

not a one-time effort but a continuous practice that

combines technical expertise, strategic planning, and

organizational alignment. Implementing these strategies

ensures that QlikView dashboards remain fast, scalable,

and capable of delivering actionable insights,

empowering enterprises to harness their data’s full

potential for informed decision-making and sustained

business success.

REFERENCE

1. Battula, V. (2014). A new era for CRM: Salesforce

automation on a scalable, cloud-native Red Hat

foundation. International Journal of Science,

Engineering and Technology, 2(8), 5.

2. Battula, V. (2014). Beyond legacy: Modernizing with

Red Hat and the open-source stack on hybrid

platforms. International Journal of Science,

Engineering and Technology, 2(2), 5.

3. Battula, V. (2015). Next-generation LAMP stack

governance: Embedding predictive analytics and

automated configuration into enterprise Unix/Linux

architectures. International Journal of Research and

Analytical Reviews (IJRAR), 2(3), 47.

4. Chowdhury, N., & Tan, M. (2011). Practical tips for

enhancing QlikView dashboard efficiency and

responsiveness. International Journal of Information

Technology and Business Management, 3(2), 42–57.

5. Fernandez, L., & Gupta, P. (2012). Optimizing ETL and

load scripts for high-performance QlikView

applications. Journal of Enterprise Analytics, 4(4), 70–

85.

6. Madamanchi, S. R. (2014). Solaris to Kubernetes: A

practical guide to containerizing legacy applications

on Linux. International Journal of Science,

Engineering and Technology, 2(2), 6.

7. Madamanchi, S. R. (2014). The UNIX-to-Linux journey:

A strategic guide for enterprise IT and cloud

transformation. International Journal of Science,

Engineering and Technology, 2(4), 5.

8. Madamanchi, S. R. (2015). Adaptive Unix ecosystems:

Integrating AI-driven security and automation for

next-generation hybrid infrastructures. International

Journal of Science, Engineering and Technology, 3(2),

47.

9. Mulpuri, R. (2014). The Sales Cloud evolution:

Salesforce and the power of hybrid infrastructure for

business growth. International Journal of Science,

Engineering and Technology, 2(5), 5.

10. Patel, D., & Nakamura, Y. (2014). Techniques for faster

data processing in QlikView: A performance-focused

approach. International Journal of Data Management

and Analytics, 6(3), 48–62.

11. Rao, S., & Kim, H. (2013). Improving responsiveness

of QlikView dashboards using best practices in data

modeling. Asian Journal of Information Systems, 5(1),

24–39.

12. Singh, A., & Oliveira, R. (2015). Enhancing QlikView

dashboard performance through optimized load

scripting. Journal of Business Intelligence and

Analytics, 8(2), 35–50.

