International Journal of Scientific Research & Engineering Trends
Volume 12, Issue 1, Jan-Feb-2026, ISSN (Online): 2395-566X

Beyond Static Secrecy: A Self-Adaptive, Noise-Aware
Privacy Amplification Framework for Heterogeneous 6G
Quantum-Secured Networks.

Okai Tettey-Antie Samuel
University of Ghana, Ghana

Abstract - Modern Quantum Key Distribution (QKD) often fails in highly dynamic mobile environments due to rigid post-
processing architectures. This paper introduces a pioneering self-adaptive privacy amplification (SAPA) framework that replaces
traditional static compression with a closed-loop controller. By integrating twelve distinct quantum noise models—including
Non-Markovian and Gaussian Bosonic channels—we demonstrate that real-time entropy estimation can reclaim up to 25% of
secure key material previously lost in mobile-induced fluctuations. Our results establish a new paradigm for "living" security in
future 6G ecosystems.
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INTRODUCTION

Quantum communication has emerged as a transformative
paradigm for secure information exchange, offering security
guarantees rooted in the laws of quantum mechanics rather than
computational assumptions. Among the most prominent
technologies in this domain is Quantum Key Distribution
(QKD), which enables two communicating parties to establish
a shared secret key while detecting the presence of any
eavesdropper. As quantum technologies transition from
laboratory demonstrations to real-world deployments, attention
has increasingly shifted toward mobile and heterogeneous
quantum networks.

Mobile quantum communication environments—such as
satellite-based QKD, unmanned aerial platforms, and mobile
ground terminals—introduce operational conditions that differ
substantially from static fiber-based links. In such
environments, quantum channels are subject to rapid
fluctuations caused by relative motion, atmospheric effects,
environmental interference, and hardware instability. These
factors give rise to non-stationary and structured quantum noise
that directly affects the reliability and security of key
generation processes.

Within the QKD protocol stack, privacy amplification plays a
critical role in ensuring that any information potentially leaked
to an adversary is eliminated from the final key. Privacy
amplification achieves this by compressing the reconciled key
according to an estimate of the

adversary’s information. Traditional privacy amplification
mechanisms assume stationary noise behavior and rely on fixed
compression parameters derived from worst-case security
analyses. While such assumptions simplify protocol design,
they become increasingly misaligned with the realities of
mobile quantum channels.

When privacy amplification parameters are fixed in dynamic
environments, two undesirable outcomes may occur. Over-
amplification leads to excessive key shortening, reducing
system throughput and practical usability. Under-amplification,
on the other hand, risks leaving residual information accessible
to an adversary, undermining security guarantees. These issues
highlight the need for adaptive mechanisms capable of
responding to changing noise conditions.

This work investigates privacy amplification in the context of
mobile quantum networks, with a specific focus on how
different quantum noise structures influence entropy dynamics
and security performance. By examining a diverse set of
quantum noise models and introducing an adaptive privacy
amplification strategy, this study aims to bridge the gap
between theoretical security assumptions and practical
deployment realities.

Background

Quantum Key Distribution Fundamentals Quantum Key
Distribution enables secure key establishment by encoding
information into quantum states whose measurement
unavoidably disturbs the system. Protocols such as BB84
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exploit this property to detect eavesdropping attempts by
monitoring error rates in the quantum channel. Following
quantum transmission, classical post-processing steps—
including sifting, error correction, and privacy amplification—
are applied to produce a secure final key.

The security of QKD relies on bounding the information
available to an adversary, typically quantified using entropy
measures. Accurate estimation of this entropy is essential for
determining how much compression is required during privacy
amplification.

Privacy Amplification in QKD

Privacy amplification reduces an adversary’s partial knowledge
of a key by applying universal hash functions or equivalent
compression techniques. The amount of compression required
depends on the estimated min-entropy of the reconciled key
conditioned on the adversary’s information. Finite-key effects,
estimation uncertainty, and channel noise all influence this
estimation process.

In practice, privacy amplification parameters are often fixed
prior to deployment. While conservative choices ensure
security, they may significantly degrade performance under
benign conditions. Conversely, optimistic assumptions can
compromise secrecy under adverse noise conditions.

Quantum Noise in Mobile Channels

Quantum noise encompasses a variety of physical processes
that degrade quantum states during transmission or
measurement. Commonly studied models include depolarizing
noise, which randomizes qubit states; amplitude damping,
which represents energy loss; and phase damping, which affects
coherence without energy dissipation.

Mobile environments introduce additional complexity in the
form of correlated and burst noise. Correlated noise exhibits
temporal dependence, violating independence assumptions
commonly used in security proofs. Burst noise manifests as
short intervals of severe disturbance, often caused by
environmental or mechanical factors. These noise structures
pose significant challenges to fixed security mechanisms.

II. RESEARCH METHOD

The approach used in this project, as has been mentioned in
previous sections, focuses mainly on developing a modular
simulation architecture in Python to inject 12 categories of
quantum disturbances. Unlike previous studies, this work
explicitly models temporal correlation via Non-Markovian
memory effects and polarization drift. The core innovation lies
in the Adaptive PA Controller, which dynamically maps

instantaneous Shannon entropy proxies to optimal hashing
compression ratios.

The research was executed through a four-phase theoretical-
comparative design. This approach was selected to facilitate
exhaustive testing of complex quantum noise dynamics that are
physically and financially impractical to replicate in current
hardware environments.

Modular Noise Synthesis and Identification

The foundation of the architecture is a modular "Noise Injector”

developed in Python. We moved beyond standard binary error

models by implementing 12 distinct categories of quantum
disturbances:

e  Pauli Channels: Included Bit-Flip (X), Phase-Flip (Z), and
Bit-Phase Flip (Y) errors.

e Environmental Dissipation: Modeled via Amplitude
Damping and Generalized Amplitude Damping to simulate
energy loss and thermal noise.

e  Coherence and Drift: Modeled using Phase Damping and
Polarization Mode Dispersion.

e Advanced Mobile Disturbances: Crucially, we
implemented Non-Markovian noise to capture temporal
memory effects and Collective Correlated noise to
simulate

e multi-qubit dependencies
channels.

typical of fading mobile

Analytical Modeling and Metric Definition.

To ensure the analysis was mathematically grounded, we
defined a "Design Space" where every noise channel is
parameterized by a probability p ranging from 0.01 to 0.30. The
system tracks four core metrics to drive the analysis:

Quantum Bit Error Rate (QBER): Measured as the direct
bitwise mismatch ratio between the original 512-bit key and the
noisy output.

Shannon Entropy Proxy (H): Calculated as H(q) = -qlog2q - (
1- q)log2( 1- q) to quantify the uncertainty of the raw key.
Entropy Retention Ratio: The percentage of usable secure bits
remaining after post-processing.

Min-Entropy (Hmin):Used as the theoretical upper bound for
extractable secret keys.

The Adaptive PA Controller Implementation.

The core innovation is the Self-Adaptive Privacy Amplification
(SAPA) controller. Unlike traditional systems that use a fixed
50% compression ratio, this controller operates as a closed-loop
feedback system:
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Real-time Estimation: The controller ingests live entropy
proxies from the quantum channel.

Dynamic Mapping: It applies a threshold-based logic to select
the optimal hashing ratio: If Entropy is greater or equal to 0.90,
the ratio is set to 1.00.

If Entropy is less than 0.60, the ratio drops to 0.50 to ensure
maximum security.

Hashing Execution:The raw key is then compressed into a final
secure key of length | = key length X ratio.

Statistical Validation and Comparative Synthesis

To ensure the results were not artifacts of simulation, we
implemented several layers of validation:

Comparative Benchmarking: Every adaptive run was
benchmarked against a static baseline under identical noise
conditions.

Statistical Significance: Results were subjected to ANOVA and
paired t-tests to verify performance differences at the 95%
confidence level (p < 0.05).

Isotonic Post-Smoothing: We applied monotonicity guards to
remove sampling artifacts, ensuring that the final "Key
Retention" curves accurately reflect physical reality.

Results and Discussion

The results section of this research evaluates how adaptive
privacy amplification (PA) performs compared to traditional
static methods across 12 distinct quantum noise environments.
The analysis focuses on three primary metrics: Quantum Bit
Error Rate (QBER) (the error rate), Shannon Entropy (the
amount of secret information), and Key Retention (the final
secure bits saved).

General Trends Across All Models

Most channels show that as noise probability (p) increases, the
error rate (QBER) rises and secret information (Entropy) falls.
The Adaptive PA approach shines in low-to-moderate noise,
often keeping significantly more bits than the static method,
which automatically throws away 50% regardless of
conditions.

Individual Model Performance

Each model below represents a different type of "noise" or

interference that happens in a mobile quantum network.

Pauli Channels (Bit-Flip, Phase-Flip, Bit-Phase Flip)

e Bit-Flip (X): This is basic interference that swaps Os and
Is. The graphs show a steady rise in errors. Adaptive PA is

twice as efficient as static methods at very low noise, only
dropping to the static level when the error rate becomes too
high to manage.

Phase-Flip (Z): This noise is "silent" because it doesn't
change the actual bits (0 and 1), meaning the QBER graph
looks flat at zero. However, it still leaks information. Our
research highlights that relying only on QBER is
dangerous; we must check the "phase" to keep the key
secure.

Bit-Phase Flip (Y): The most punishing of the three, as it
affects both the bits and the phase. The retention graph
shows the adaptive advantage disappears very quickly
because the noise is so destructive.

Environmental & Thermal Models

Depolarizing: This represents a "total chaos" channel
where bits are randomized10. Adaptive PA remains helpful
until noise reaches about 15-18%, after which it must
compress the key as much as the static method to stay safe.
Amplitude Damping: This simulates losing light particles
(photons). The error rise is gentler here, allowing the
adaptive controller to save extra bits even when other
models have already "collapsed".

Generalized Amplitude Damping: This adds heat (thermal
noise) to the loss. It is slightly more taxing than standard
damping, causing the adaptive advantage to shrink
soonerlS.

Phase Damping: Similar to the Phase-Flip, this is "silent"
noise. The graphs show 100% entropy unless we
specifically look for phase errors, proving that mobile
systems need better sensors than just basic error counters.
Mobile-Specific & Advanced Models

Non-Markovian (Memory): In mobile networks, noise isn't
always random; it can have a "memory" where one error
leads to anotherl8. The graphs here aren't smooth—they
show "plateaus" where security briefly stabilizes before
dropping again.

Collective/Correlated: This mimics "bursts" of noise. The
results show this is brutal; the adaptive method loses its
advantage almost immediately because the errors cluster
together, destroying the key's secret content.

Gaussian Bosonic: This simulates specific complex
signals. It shows a "knee" in the graph—security is fine for
a while, but once the noise hits a certain threshold, the key
quality collapses instantly.

Polarization Mode Dispersion (PMD): This is a "drift" in
the signal over long fibers or air24. It erodes the adaptive
margin earlier than standard loss, meaning the system has
to work harder to stay secure.

Photon Number Splitting (PNS): This is a simulated attack
where an eavesdropper steals extra light particles. Like
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phase noise, it is silent (QBER ~ 0), but our adaptive model
correctly shows that secrecy must be cut to "starve" the
attacker of information.

Summary of Graph Metrics
The unified analysis (comparing all 12 models on one chart)
reveals three zones:

The Gold Zone (Low Noise): Adaptive PA keeps 100-250 more
bits than static PA.

The Transition Zone: The "knee" of the curve where the
adaptive system starts tightening security.

The Floor Zone (High Noise): Where the channel is so noisy
that the adaptive system behaves like the static system to ensure
the resulting key is 100% secret.

Statistical Validation: Our analysis (ANOVA and t-tests)
confirms that these gains are not accidental and are directly tied
to how the adaptive controller "reads" the unique noise of the
mobile environment.

Below are the graphs from the experiment simulations; Per-
model curves (QBER, secrecy entropy, retention)

Static vs Adaptive PA Across 12 Quantum Noise Models.
(QBER, Secrecy Entropy, Key Retention) + Selfinterpreting Annotations

Figl_PerModel_12Models.

Adaptive privacy amplification as entropy-tracking control
under diverse quantum channels Figure 1 can be interpreted
through the lens of privacy amplification as randomness
extraction against an adversary with quantum side information.
In QKD, the number of secure bits that can be extracted is
fundamentally constrained by the pre-amplification uncertainty
Eve has about the raw key, typically characterized using smooth

min-entropy and formalized via the quantum generalization of
the Leftover Hash Lemma.

In static PA, a fixed compression ratio implicitly assumes a
“typical” noise regime; the figure shows why that assumption
fails across heterogeneous channels: some environments lose
secrecy mainly through bit errors (visible in QBER), while
others leak information through phase/leakage mechanisms
that may not raise QBER (the “silent” cases). This is consistent
with standard security proofs of BB84-style protocols where
secrecy depends on both bases, not merely observed bit
disagreements.

Phase-dominant channels and PNS-like behavior: QBER can
remain near zero while secrecy entropy drops, meaning QBER-
only monitoring is insufficient; decoy-state analysis exists
precisely to bound multi-photon leakage and related attacks.

Non-Markovian channels: plateaus and non-smooth transitions
align with the idea of information backflow from environment
to system, a hallmark of non-Markovianity.

Gaussian Bosonic channels: knee-like collapses reflect known
threshold-style behavior in optical/bosonic settings, where
capacity-relevant quantities can change sharply once
noise/attenuation crosses a critical region.

Unified retention (Gold — Transition — Floor)
Unified Retention vs Noise (All 12 Models): Gold - Transition = Floor

Adaptive range (min-max)
w— Adaptive mean (12 models)
= = Static baseline (50%)
Gold Zone
4501 Transition Zone
Floor Zone

3001
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Fig2 Unified Retention.

Three-regime behavior as a phase diagram for secrecy
extraction Figure 2 behaves like a phase diagram for post-
processing: a low-noise region where entropy remains high and
adaptive PA preserves more bits (“Gold”), an intermediate
region where secrecy degrades rapidly (“Transition”), and a
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high-noise regime where any safe extractor must compress
aggressively (“Floor”). This structure matches how modern
security proofs treat key extraction: the extractable key length
scales with the amount of uncertainty (entropy) remaining after
error correction and parameter estimation, and privacy
amplification must shrink the key enough to make Eve’s
residual information negligible.

The “Floor” convergence is not a weakness; it is the expected
behavior of a conservative system obeying composable
security: when entropy estimates fall too low, the only safe
move is to reduce output key length toward a baseline that
avoids over-claiming secrecy. This framing is directly
consistent with the role of privacy amplification in
unconditional security and finite-key style arguments (where
conservative bounds protect against estimation error and
adversarial strategies).

Mobile noise trajectory p(t)
Mobile Condition: RealTime Noise Movement plt)

0304

0054

0 b 4 L] & 10 il 0
Time step

Fig3 Mobile p t.

Mobility turns channel noise into a non-stationary stochastic
process

Figure 3 models the practical reality that mobile quantum links
are non-stationary: rather than a single fixed channel parameter,
the effective noise probability varies over time due to motion,
alignment drift, atmospheric effects, hardware temperature
variation, and intermittent interference. Theoretically, this
means parameter estimation must be understood as tracking a
time-varying process, where the “true” channel can move
during the window in which statistics are collected. This is
precisely where rigid post-processing assumptions become
brittle:

fixed-ratio compression is effectively a commitment to the
wrong distribution whenever the environment shifts.

In that context, an adaptive PA controller can be interpreted as
a mechanism that continuously maps updated secrecy estimates
into extractor output length, staying aligned with the security
logic of entropy-based extraction.

Real-time retention under mobility (adaptive vs static)

Real-Time Key Retention Under Mobile Noise: Adaptive vs Static (All Models)
{faint lines=per-model adaptive)

— Adaplive mean (12 modes)
= Static baseline (50%)

g

ted 1 sharp drops
(typically bursticorrelated behavior)
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Figd Mobile Retention.

Closed-loop secrecy management under bursty and correlated
disturbances

Figure 4 illustrates the value of a closed-loop design: when
noise spikes or becomes correlated (bursts), adaptive PA
tightens compression immediately, preventing accidental
“over-release” of key material, then relaxes when conditions
recover. This is analogous to robust control in engineering
terms, but grounded in cryptographic theory: privacy
amplification must ensure the extracted key is statistically close
to uniform even in the presence of quantum side information,
which the Leftover Hash Lemma formalizes.

The bursts also relate to physical channel phenomena. In
fiber/free-space systems, polarization effects and dispersion
can introduce time-dependent distortions that behave like
drifting or bursty impairments; polarization mode dispersion is
a classical example of a polarization-dependent propagation
effect that can vary with environment and stress, contributing
to time-varying signal quality.

Finally, the real-time view reinforces the “silent threat” point:
even when visible error indicators are calm, secrecy can still
deteriorate due to phase/leakage mechanisms or multiphoton
vulnerabilities, motivating decoy-state bounds and dual-basis
sampling as part of a secure mobile pipeline.

Here, we discuss the simulations;

UNIFIED INTERPRETATION (All 12 models)
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Mean gains: Gold=101.2 bits, Transition=14.8 bits,
Floor=1.4 bits.

Mean knee/collapse around p~0.27.

MODEL: Bit Flip

Peak gain: +230.0 bits at p=~0.01.

Collapse point: p=0.13 (adaptive=static).

Zone gains: Gold=114.7, Transition=7.1, Floor=0.0 bits.
End snapshot (p=0.30): QBER~0.300, entropy~0.425.

MODEL: Phase Flip

Silent-noise detected: QBER~0 but secrecy entropy drops
— QBER-alone is misleading.

Peak gain: +230.0 bits at p=0.01.

Collapse point: p~0.22 (adaptive=static).

Zone gains: Gold=127.3, Transition~34.7, Floor=2.4 bits.
End snapshot (p=0.30): QBER~0.000, entropy~0.581.

MODEL.: Bit-Phase Flip

Peak gain: +208.8 bits at p=0.01.

Collapse point: p~0.09 (adaptive=static).

Zone gains: Gold~=68.6, Transition~0.0, Floor~0.0 bits.
End snapshot (p=0.30): QBER~0.330, entropy~0.171.

MODEL: Depolarizing

Peak gain: +230.0 bits at p~0.01.

Collapse point: p~0.15 (adaptive=static).

Zone gains: Gold=114.7, Transition=8.9, Floor~0.0 bits.
End snapshot (p=0.30): QBER~0.200, entropy~0.396.

MODEL: Amplitude Damping

Peak gain: +230.0 bits at p=~0.01.

Collapse point: p~0.18 (adaptive=static).

Zone gains: Gold=136.3, Transition~24.1, Floor=0.0 bits.
End snapshot (p=0.30): QBER~0.165, entropy~0.484.

MODEL: Generalized Amplitude Damping

Peak gain: +230.0 bits at p=0.01.

Collapse point: p~0.13 (adaptive=static).

Zone gains: Gold=112.7, Transition=7.1, Floor=0.0 bits.
End snapshot (p=0.30): QBER~0.210, entropy~0.386.

MODEL: Phase Damping

Silent-noise detected: QBER~0 but secrecy entropy drops
— QBER-alone is misleading.

Peak gain: +153.0 bits at p=0.01.

Collapse point: p=0.27 (adaptive=static).

Zone gains: Gold=114.5, Transition=46.7, Floor=14.2 bits.

End snapshot (p=0.30): QBER=0.000, entropy~0.623.

MODEL: Non-Markovian

Peak gain: +164.6 bits at p=0.01.

Collapse point: p=~0.13 (adaptive=static).

Zone gains: Gold=104.9, Transition~7.1, Floor=0.0 bits.
End snapshot (p=0.30): QBER~0.225, entropy~0.349.

MODEL: Collective Correlated

Peak gain: +76.0 bits at p~0.01.

Collapse point: p~0.06 (adaptive=static).

Zone gains: Gold=21.0, Transition~0.0, Floor=0.0 bits.
End snapshot (p=0.30): QBER~0.335, entropy~0.169.

MODEL: Gaussian Bosonic

Peak gain: +230.0 bits at p=0.01.

Collapse point: p~0.15 (adaptive~static).

Zone gains: Gold=136.3, Transition=17.5, Floor=0.0 bits.
End snapshot (p=0.30): QBER~0.439, entropy~0.017.

MODEL: Polarization Mode Dispersion
Peak gain: +153.0 bits at p=0.01.

Collapse point: p~0.13 (adaptive~static).
Zone gains: Gold=82.5, Transition=7.1, Floor=0.0 bits.
End snapshot (p=0.30): QBER~0.210, entropy~0.335.

MODEL: Photon Number Splitting

Silent-noise detected: QBER~0 but secrecy entropy drops
— QBER-alone is misleading.

Peak gain: +153.0 bits at p=0.01.

Collapse point: p~0.18 (adaptive~static).

Zone gains: Gold~=80.3, Transition~17.7, Floor=0.0 bits.
End snapshot (p=0.30): QBER~0.000, entropy~0.549.

STATISTICAL VALIDATION (Adaptive gain = Adaptive -
Static) Gold zone mean=101.15 bits, std=63.04

Transition mean=14.83 bits, std=20.41 Floor zone mean=1.38
bits, std=5.56 One-sample t-tests (H1: mean gain > 0) Gold:
t=13.520, p=1.270e-21

Transition: t=6.621, p=1.652e-09 Floor: t=2.269, p=1.292e-02
ANOVA across zones: F=162.488, p=3.683e-45

III. CONCLUSION
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This research establishes a comprehensive framework for
Adaptive Privacy Amplification (APA) tailored to the volatile
conditions of quantum-secured mobile networks. By
transitioning from static, fixed-ratio compression toward a
dynamic, noise-aware control paradigm, this work directly
addresses the inefficiencies that have historically limited the
applicability of Quantum Key Distribution (QKD) in mobile
and non-stationary environments.

Several scientifically significant conclusions emerge from the
evaluation. First, the proposed adaptive model demonstrates
markedly improved efficiency in dynamic channels, achieving
substantial gains in secure key retention at low-to-moderate
noise levels when compared to traditional static approaches.
Second, the analysis reveals well-defined collapse thresholds
across twelve distinct quantum noise models, showing that
adaptive privacy amplification retains a principled
conservatism—converging to static security floors under
severe interference to preserve composable secrecy.

The results further confirm that secrecy capacity is governed
not only by noise intensity but also by noise structure. Memory
effects in Non-Markovian channels and knee-like transitions in
Gaussian Bosonic environments illustrate that temporal
correlations and channel dynamics critically shape adaptive
performance. In addition, the study highlights the limitations of
relying solely on Quantum Bit Error Rate (QBER) as a security
indicator. Phase-dominant and eavesdropping-oriented noise
models demonstrate that significant information leakage can
occur without observable bit errors, underscoring the necessity
of entropy-aware mechanisms incorporating dual-basis
sampling and decoy-state analysis.

Collectively, this work bridges the gap between idealized
quantum security proofs and the stochastic realities of emerging
6G-era mobile communication systems. By introducing a
scalable, software-defined architecture for real-time entropy
management, the proposed framework provides a practical
foundation for resilient, high-throughput quantum-secure
networks operating across terrestrial, aerial, and satellite-based
infrastructures.
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