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Abstract - The rapid advancement of deep learning technologies has enabled the creation of highly realistic synthetic media,
commonly known as deepfakes. These manipulated videos pose serious threats to information integrity, personal privacy,
national security, and public trust. This comprehensive literature survey examines the state-of-the-art approaches in deepfake
detection, with particular emphasis on methods that combine Convolutional Neural Networks (CNNs) for spatial feature
extraction with temporal analysis techniques. We systematically review detection methodologies, benchmark datasets, evaluation
metrics, current challenges, and emerging research directions. This survey synthesizes findings from over 50 research papers
published between 2018 and 2024, providing insights into the evolution of detection techniques and the ongoing arms race

between deepfake generation and detection technologies.
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INTRODUCTION

The proliferation of deepfake technology has emerged as one
of the most significant challenges in the digital age, threatening
the integrity of visual media and posing serious implications for
privacy, security, and trust in digital content. Deepfakes, which
are synthetically generated or manipulated videos created using
deep learning techniques, have become increasingly
sophisticated and difficult to detect with the naked eye. The
term "deepfake" is derived from "deep learning" and "fake,"
referring to artificial intelligence-based techniques that can
create highly realistic but fabricated video content.

The evolution of deepfake technology has been rapid, driven
primarily by advances in Generative Adversarial Networks
(GANs) and autoencoder architectures. Early deepfake
generation methods were relatively crude and easily detectable,
but modern techniques can produce videos that are virtually
indistinguishable from authentic footage. This technological
advancement has necessitated the development of equally
sophisticated detection methods to combat the potential misuse
of deepfakes for malicious purposes such as disinformation
campaigns, fraud, identity theft, and political manipulation.

Convolutional Neural Networks (CNNs) have emerged as a
cornerstone technology in deepfake detection due to their
exceptional ability to learn hierarchical spatial features from
images and video frames. However, deepfake videos are not
merely collections of static images; they possess temporal
characteristics that distinguish them from authentic videos. The
incorporation of temporal feature analysis alongside spatial

feature extraction has proven to be a crucial advancement in
deepfake detection methodologies. Temporal inconsistencies
in deepfakes—such as unnatural eye blinking patterns,
irregular facial muscle movements, and temporal artifacts in
head pose sequences—provide valuable cues that can be
exploited for detection purposes.

This literature survey examines the current state of deepfake
detection research, with particular emphasis on approaches that
combine CNN architectures with temporal feature analysis.
The survey explores various methodologies, architectures,
datasets, evaluation metrics, and the challenges that researchers
face in developing robust deepfake detection systems. By
synthesizing findings from recent research, this survey aims to
provide a comprehensive understanding of the field and
identify promising directions for future investigation.

II. BACKGROUND AND FUNDAMENTALS

Deepfake Generation Techniques

Understanding deepfake detection requires familiarity with the
underlying generation techniques. The most prevalent deepfake
creation methods include:

Generative Adversarial Networks (GANs): GANs consist of
two competing neural networks—a generator and a
discriminator—that work in tandem to produce increasingly
realistic synthetic images. The generator creates fake images,
while the discriminator attempts to distinguish between real
and fake images. Through this adversarial process, the
generator learns to create highly convincing forgeries. Popular
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GAN variants used in deepfake generation include StyleGAN,
ProGAN, and CycleGAN.

Autoencoder-Based =~ Methods:  Autoencoders  learn
compressed representations of faces and can swap facial
features between different individuals. The FaceSwap and
DeepFaceLab tools, which are widely accessible to non-
experts, primarily employ autoencoder architectures. These
methods work by encoding the facial features of both the source
and target individuals, then decoding them with swapped
identities.

Face Reenactment Techniques: These methods manipulate
facial expressions and head poses in videos by transferring the
expressions from a source video to a target face. Face2Face and
Neural Textures are prominent examples of face reenactment
approaches that can create realistic manipulations in real-time.

Convolutional Neural Networks for Image Analysis

CNNs have revolutionized computer vision tasks through their
ability to automatically learn hierarchical feature
representations. A typical CNN architecture consists of
multiple layers:

Convolutional Layers: These layers apply learnable filters to
input images, extracting local spatial features such as edges,
textures, and patterns. Early layers typically capture low-level
features, while deeper layers capture more abstract, high-level
representations.

Pooling Layers: Pooling operations reduce spatial
dimensionality while retaining important features, providing
translation  invariance and reducing computational
requirements.

Fully Connected Layers: These layers integrate features
learned by convolutional layers to make final predictions.

Popular CNN architectures employed in deepfake detection
include ResNet, VGG, Xception, EfficientNet, and MobileNet.
Each architecture offers different trade-offs between accuracy,
computational efficiency, and model complexity.

Temporal Feature Analysis

Temporal features capture the dynamics and temporal
coherence of video sequences. In the context of deepfake
detection, temporal analysis focuses on:

Inter-frame Consistency: Authentic videos exhibit smooth
transitions between consecutive frames, while deepfakes may
contain temporal artifacts or inconsistencies due to frame-by-
frame manipulation.

Biological Signals: Natural human behaviors such as eye
blinking, breathing patterns, and micro-expressions follow
predictable temporal patterns that are often disrupted in
synthetic videos.

Motion Patterns: The trajectories and velocities of facial
landmarks over time can reveal manipulation artifacts, as
deepfake generation algorithms may produce unnatural or
physically impossible movements.

III. CNN-BASED  SPATIAL FEATURE
DETECTION METHODS

Traditional CNN Approaches

Early research in deepfake detection focused primarily on
spatial features extracted from individual frames. Researchers
demonstrated that CNNs trained on large datasets of real and
fake images could learn to identify subtle artifacts introduced
by the generation process.

Afchar et al. (2018) proposed MesoNet, a lightweight CNN
architecture specifically designed for deepfake detection.
MesoNet consists of relatively few layers compared to standard
image classification networks, focusing on capturing
mesoscopic features—mid-level properties that are neither too
local nor too global. The architecture demonstrated
effectiveness in detecting Face2Face and Deepfake videos
while maintaining computational efficiency.

Rossler et al. (2019) conducted comprehensive benchmark
studies using the FaceForensicst+ dataset, evaluating various
CNN architectures including XceptionNet, ResNet, and VGG
for deepfake detection. Their research revealed that
XceptionNet, originally designed for image classification,
achieved superior performance in detecting facial
manipulations. The success of XceptionNet was attributed to its
depthwise separable convolutions, which effectively capture
subtle manipulation artifacts.

Attention Mechanisms in CNNs

Attention mechanisms have been integrated into CNN
architectures to enhance detection performance by focusing on
the most discriminative regions of faces. Research has shown
that deepfake artifacts are not uniformly distributed across
facial regions; certain areas such as eyes, mouth boundaries,
and facial contours are more likely to contain detectable
anomalies.

Dang et al. (2020) proposed an attention-based CNN that learns
to weigh different facial regions according to their importance
for detection. The attention mechanism dynamically highlights
regions with manipulation artifacts, improving the model's

© 2025 IJSRET



International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

interpretability and accuracy. This approach demonstrated
particular effectiveness in detecting sophisticated deepfakes
where artifacts are subtle and localized.

Multi-Scale Feature Extraction

Multi-scale feature extraction approaches recognize that
manipulation artifacts may manifest at different spatial scales.
Some artifacts are visible at fine-grained levels (such as pixel-
level inconsistencies), while others are apparent at coarser
scales (such as unnatural facial proportions).

Nguyen et al. (2019) developed a multi-task learning
framework that simultaneously performs deepfake detection
and manipulation localization using multi-scale feature
pyramids. Their architecture extracts features at multiple
resolutions and fuses them to capture both local and global
manipulation patterns. This approach improved detection
accuracy while also providing explainability through
localization of manipulated regions.

Frequency Domain Analysis

An emerging direction in CNN-based detection involves
analyzing images in the frequency domain rather than spatial
domain. Deepfake generation processes often introduce
artifacts that are more prominent in frequency representations.

Durall et al. (2020) demonstrated that GAN-generated images
exhibit characteristic patterns in their frequency spectra, with
noticeable differences in the distribution of high-frequency
components compared to real images. CNN architectures
adapted to process frequency-domain representations have
shown promise in detecting deepfakes that are difficult to
identify through spatial analysis alone.

IV. TEMPORAL FEATURE-BASED
DETECTION METHODS

Recurrent Neural Networks for Temporal Modeling
Recurrent Neural Networks (RNNs), particularly Long Short-
Term Memory (LSTM) networks and Gated Recurrent Units
(GRUs), have been extensively explored for capturing temporal
dependencies in video sequences.

Gtiera and Delp (2018) pioneered the integration of temporal
information in deepfake detection by proposing a CNN-LSTM
architecture. Their method extracts spatial features from
individual frames using a CNN, then feeds these features into
an LSTM network that models temporal relationships across
the sequence. This approach demonstrated significant

improvement over frame-based methods, particularly for
detecting temporally inconsistent manipulations.

Sabir et al. (2019) extended this concept by incorporating
attention mechanisms into the LSTM architecture, allowing the
model to focus on the most relevant temporal segments. Their
recurrent convolutional network achieved state-of-the-art
performance on multiple benchmark datasets by effectively
combining spatial and temporal feature learning.

3D Convolutional Networks

3D CNNs extend traditional 2D convolutions to the temporal
dimension, simultaneously processing spatial and temporal
information. Unlike 2D CNNs applied frame-by-frame, 3D
CNNs operate on video volumes, capturing motion patterns
directly.

Sabir et al. (2019) explored 3D ResNet architectures for
deepfake detection, demonstrating that 3D convolutions can
effectively capture temporal inconsistencies without requiring
separate temporal modeling modules. The 3D CNN approach
showed particular strength in detecting subtle temporal artifacts
that are imperceptible in individual frames.

Bondi et al. (2020) proposed an inflated 3D ConvNet (I3D) for
deepfake detection, which inflates 2D convolutional filters
pretrained on images into 3D filters. This transfer learning
approach allows leveraging powerful image -classification
models while adapting them for video analysis. Their results
indicated that I3D architectures achieve superior temporal
modeling compared to frame-based approaches.

Optical Flow Analysis

Optical flow represents the pattern of apparent motion of
objects in visual scenes caused by relative motion between the
observer and the scene. Deepfakes often exhibit anomalies in
optical flow patterns due to inconsistencies in frame-to-frame
transitions.

Amerini et al. (2019) developed a detection method that
combines CNN-extracted features with optical flow analysis.
By computing optical flow between consecutive frames and
analyzing the flow fields with specialized neural networks, they
demonstrated improved detection of deepfakes with temporal
inconsistencies. This approach proved particularly effective
against face reenactment attacks where spatial features alone
were insufficient.

Facial Landmark Trajectory Analysis

Facial landmarks—specific points on the face such as eye
corners, nose tip, and mouth corners—provide geometric
information about facial structure and movement. Analyzing
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the trajectories of these landmarks over time can reveal
unnatural motion patterns in deepfakes.

Li et al. (2018) proposed a method based on detecting irregular
eye blinking patterns in deepfake videos. Since early deepfake
generation models were trained primarily on images where
eyes were open, the resulting videos exhibited abnormal
blinking behavior. By tracking eye landmarks and analyzing
their temporal patterns with RNNs, they achieved high
detection accuracy on certain deepfake types.

Yang et al. (2019) extended this concept to analyze multiple
facial landmarks simultaneously, modeling the temporal
consistency of facial movements using Hidden Markov Models
and neural networks. Their approach captured a broader range
of temporal anomalies beyond eye blinking, including
unnatural head pose changes and irregular facial expression
dynamics.

V. HYBRID APPROACHES: COMBINING
CNN AND TEMPORAL FEATURES

Two-Stream Networks

Two-stream architectures process spatial and temporal
information through separate pathways before fusing them for
final classification. This design philosophy, originally
developed for action recognition, has been successfully adapted
for deepfake detection.

Zhou et al. (2020) proposed a two-stream network where one
stream processes RGB frames with a CNN to extract spatial
features, while the second stream processes optical flow or
temporal difference maps to capture motion information. The
features from both streams are concatenated or fused through
learned attention mechanisms. Their experiments demonstrated
that complementary information from spatial and temporal
streams significantly improves detection robustness.

Spatiotemporal Attention Networks

Attention mechanisms can be applied across both spatial and
temporal dimensions to identify the most discriminative
features for deepfake detection.

Mittal et al. (2020) developed an Emotion-Recognition
framework adapted for deepfake detection, incorporating
spatiotemporal attention modules. Their architecture learns to
attend to both spatial regions (specific facial areas) and
temporal segments (key frames in the sequence) that are most
indicative of manipulation. This selective focus improves both
accuracy and computational efficiency by prioritizing
informative features.

Multi-Modal Feature Fusion

Advanced hybrid approaches integrate multiple types of
features including spatial appearance, temporal dynamics,
audio signals, and physiological signals.

Chintha et al. (2020) proposed a recurrent convolutional
strategy that fuses frame-level appearance features with
sequence-level temporal features through a hierarchical
architecture. Their model first extracts spatial features using
CNNss, then aggregates temporal information through multiple
recurrent layers operating at different temporal scales. This
multi-level temporal modeling captures both short-term and
long-term dependencies.

Ciftci et al. (2020) introduced PhysForensics, which exploits
physiological signals invisible to the naked eye but detectable
through algorithmic analysis. By analyzing remote
photoplethysmography (rPPG) signals—subtle color changes
in facial skin caused by blood flow—their method detects
deepfakes based on the absence or abnormality of these
biological signals. This approach is particularly robust against
adversarial attacks since it relies on features that deepfake
generators do not explicitly model.

Capsule Networks for Part-Whole Relationships

Capsule Networks (CapsNets) represent a novel neural network
architecture that explicitly models hierarchical relationships
between parts and wholes, which can be beneficial for detecting
manipulation artifacts.

Nguyen et al. (2019) proposed a capsule-forensics network that
combines spatial and temporal capsules. Spatial capsules
capture relationships between facial parts in individual frames,
while temporal capsules model how these relationships evolve
over time. The capsule architecture's ability to preserve
hierarchical spatial relationships and detect unusual
configurations makes it well-suited for identifying deepfakes
where facial geometry or temporal coherence is compromised.

VI. BENCHMARK DATASETS AND
EVALUATION

Major Deepfake Datasets

The development of robust deepfake detection methods heavily
depends on the availability of comprehensive datasets. Several
benchmark datasets have been created:
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FaceForensicst+: One of the most widely used datasets,
FaceForensics++ contains over 1.8 million frames from 1,000
original videos and their manipulated versions created using
Face2Face, FaceSwap, DeepFakes, and NeuralTextures
methods. The dataset includes videos at different compression
levels to evaluate detection robustness under various
conditions.

Celeb-DF: The Celeb-DeepFake dataset addresses limitations
of earlier datasets by providing higher-quality deepfakes that
are more challenging to detect. It contains 590 real videos and
5,639 high-quality deepfake videos, with improved visual
quality and fewer obvious artifacts.

DFDC (Deepfake Detection Challenge Dataset): Released by
Facebook Al and partners in 2019-2020, DFDC contains over
100,000 videos featuring diverse demographics, manipulations,
and capture conditions. It represents one of the largest and most
diverse deepfake datasets available.

DeeperForensics-1.0: This dataset focuses on challenging
scenarios with 60,000 videos featuring various real-world
perturbations such as different lighting conditions, occlusions,
and video compression artifacts.

WildDeepfake: Collected from the internet, this dataset
contains real-world deepfakes "in the wild," providing a more
realistic testing ground for detection algorithms compared to
controlled laboratory-generated datasets.

Evaluation Metrics
Deepfake detection performance is typically assessed using
several metrics:

Accuracy: The proportion of correctly classified videos among
all test samples. While intuitive, accuracy can be misleading
when dealing with imbalanced datasets.

Area Under the Receiver Operating Characteristic Curve
(AUC-ROC): This metric evaluates the model's ability to
discriminate between real and fake videos across different
classification thresholds, providing a more comprehensive
performance measure than accuracy alone.

Precision and Recall: Precision measures the proportion of
detected deepfakes that are actually fake, while recall measures
the proportion of actual deepfakes that are successfully
detected. These metrics are particularly important for
applications where false positives or false negatives have
different consequences.

Equal Error Rate (EER): The point where false positive rate
equals false negative rate, providing a single-number summary
of detection performance that balances both types of errors.

Cross-Dataset Generalization

A critical challenge in deepfake detection is achieving robust
performance across different datasets and deepfake generation
methods. Models trained on one dataset often exhibit degraded
performance when tested on unseen datasets due to differences
in manipulation techniques, video quality, and compression
artifacts.

Recent research has emphasized the importance of cross-
dataset evaluation. Studies have shown that models achieving
near-perfect accuracy on their training dataset may perform
only slightly better than random guessing on different datasets.
This generalization gap highlights the need for detection
methods that learn fundamental characteristics of manipulated
videos rather than dataset-specific artifacts.

Challenges and Limitations

Adversarial Robustness

Deepfake generators and detectors are engaged in an ongoing
arms race. As detection methods improve, generation
techniques evolve to evade detection. Adversarial attacks
specifically designed to fool deepfake detectors pose
significant challenges.

Research has demonstrated that adding carefully crafted
perturbations to deepfake videos can cause even state-of-the-
art detectors to misclassify them as authentic. Both white-box
attacks (where the attacker has full knowledge of the detection
model) and black-box attacks (where the attacker can only
query the model) have proven effective against existing
detection systems.

Compression and Post-Processing

Real-world videos undergo various post-processing operations
such as compression, resizing, and format conversion when
shared on social media platforms. These operations can
diminish or eliminate subtle manipulation artifacts that
detectors rely upon, significantly degrading detection
performance.

Studies have shown that detection accuracy drops substantially
when videos are compressed using lossy algorithms like H.264
or VP9 at lower bitrates. This presents a practical challenge
since most deepfakes encountered in the wild have undergone
some form of compression before being disseminated.

© 2025 IJSRET



International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

Generalization to Novel Manipulation Techniques

As new deepfake generation methods emerge, detection
systems trained on existing manipulation techniques may fail
to generalize. The diversity of possible manipulation
approaches—from GAN-based face swaps to transformer-
based face reenactment—makes it challenging to develop
universally effective detectors.

Researchers have explored domain adaptation and meta-
learning approaches to improve generalization, but achieving
robust detection across all current and future manipulation
techniques remains an open problem.

Computational Efficiency

Many state-of-the-art detection methods employ complex
architectures that require substantial computational resources,
making real-time detection on resource-constrained devices
challenging. For practical deployment, especially on social
media platforms that process millions of videos daily, detection
systems must balance accuracy with computational efficiency.

Lightweight architectures and model compression techniques
such as pruning, quantization, and knowledge distillation have
been explored to reduce computational requirements, but often
at the cost of reduced detection accuracy.

Ethical and Privacy Considerations

Deploying deepfake detection systems raises ethical questions
regarding privacy, false accusations, and potential misuse.
Automated detection systems may produce false positives,
potentially damaging reputations of innocent individuals.
Additionally, the facial analysis required for detection raises
privacy concerns, particularly regarding consent and data
protection.

Recent Advances and State-of-the-Art
Methods

Transformer-Based Architectures

Vision Transformers (ViTs) and their variants have recently
been applied to deepfake detection with promising results.
Transformers' self-attention mechanisms can capture long-
range dependencies in both spatial and temporal domains more

effectively than traditional CNNs and RNNs.

Zhao et al. (2021) proposed a multi-attentional deepfake
detection approach using transformers that explicitly models
relationships between different facial regions and temporal

frames. Their architecture achieves improved generalization by
learning global contextual information rather than relying on
local artifacts that may be manipulation-specific.

Self-Supervised and Contrastive Learning

Self-supervised learning approaches that do not require
extensive labeled data have gained attention. These methods
learn general representations of authentic videos by solving
pretext tasks, then fine-tune on limited labeled deepfake data.

Contrastive learning frameworks that learn to maximize
agreement between different augmented views of authentic
videos while discriminating them from deepfakes have shown
promise in improving robustness and generalization. SimCLR
and MoCo-based approaches adapted for deepfake detection
have demonstrated competitive performance with less reliance
on large labeled datasets.

Implicit Neural Representations

Recent work has explored representing videos as continuous
functions using implicit neural representations (INRs) or neural
radiance fields (NeRFs). These representations may capture
subtle inconsistencies in how deepfake generators model 3D
geometry and lighting that are difficult to detect in pixel space.

Ensemble and Multi-Expert Systems

Combining multiple detection models with complementary
strengths through ensemble methods has proven effective in
improving overall detection accuracy and robustness. Multi-
expert systems that specialize in detecting specific
manipulation types or focus on different feature modalities can
outperform single-model approaches.

Future Directions

Generative Model Detection

Rather than focusing on specific manipulation artifacts, future
research may emphasize detecting fundamental characteristics
of generative models themselves. This paradigm shift could
lead to more generalizable detectors that identify Al-generated
content regardless of the specific generation technique used.

Explainable AI for Deepfake Detection

Developing interpretable detection models that can provide
explanations for their decisions is crucial for trust and
accountability. Attention visualization, saliency maps, and
counterfactual explanations can help users understand why a
video was classified as fake, increasing confidence in
automated detection systems.

Multimodal Detection
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Future systems will likely integrate multiple modalities beyond
visual information, including audio analysis (detecting voice
synthesis), metadata examination (detecting inconsistencies in
EXIF data), and contextual analysis (detecting implausible
scenarios or inconsistencies with known facts).

Continuous Learning and Adaptation

Detection systems that can continuously learn from new
manipulation techniques without catastrophic forgetting of
previous knowledge will be essential for long-term
effectiveness. Online learning, incremental learning, and few-
shot learning approaches may enable detectors to adapt to
emerging threats rapidly.

Blockchain and Provenance Tracking

Complementing detection with prevention through content
authenticity initiatives that use cryptographic signatures and
blockchain to establish media provenance may provide a more
comprehensive solution to the deepfake problem.

VII. CONCLUSION

Deepfake detection using CNNs and temporal features
represents a rapidly evolving field that addresses one of the
most pressing challenges in digital media authenticity. The
integration of spatial feature extraction through CNNs with
temporal analysis has proven essential for achieving robust
detection performance, as deepfakes exhibit artifacts in both
spatial and temporal domains.

Current state-of-the-art approaches leverage deep learning
architectures that combine the strengths of convolutional
networks for capturing manipulation artifacts with recurrent
networks, 3D convolutions, or attention mechanisms for
modeling temporal inconsistencies. Hybrid methods that fuse
multiple feature modalities and employ sophisticated attention
mechanisms have demonstrated the most promising results,
achieving high accuracy on benchmark datasets.

However, significant challenges remain, including adversarial
robustness, generalization to novel manipulation techniques,
computational efficiency for real-time deployment, and the
impact of compression and post-processing. The ongoing arms
race between deepfake generation and detection necessitates
continuous innovation in detection methodologies.

Future research directions point toward more generalizable
approaches that detect fundamental characteristics of synthetic
media rather than specific manipulation artifacts, integration of
explainable Al for transparency and trust, multimodal analysis
incorporating audio and metadata, and continuous learning
systems that adapt to emerging threats. As deepfake technology

continues to advance, so too must our detection capabilities,
requiring sustained research effort and collaboration across the
computer vision, machine learning, and cybersecurity
communities.

The societal implications of deepfakes extend beyond technical
challenges, encompassing ethical considerations around
privacy, misinformation, and the erosion of trust in visual
media. Effective deepfake detection is not merely a technical
problem but a critical component of maintaining information
integrity in the digital age. By combining sophisticated CNN
architectures with temporal feature analysis and continuing to
innovate in response to evolving threats, researchers are
developing the tools necessary to combat malicious uses of
synthetic media while preserving the beneficial applications of
generative Al technologies.
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