

© 2025 IJSRET
1

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

Distinguishing AI-Generated vs Human-Written Code

for Plagiarism Prevention
Aryan Bhatt, Aryan Verma, Dr. Manish Kumar

Babu banarasi das university

Abstract - Artificial Intelligence (AI) methods, specifically Large Language Models (LLMs), are increasingly being employed by

developers and students to produce source code. Though helpful, such AI-produced code is problematic in terms of plagiarism,

originality, and academic honesty. Hence, differentiating between code written by humans and code generated by AI has become

vital for the prevention of plagiarism. This article provides an empirical evaluation of current AI detection tools to determine

how well they can detect AI-generated code in educational and coding environments. The findings indicate that most of the tools

are ineffective and not generalizable enough to be useful for detecting plagiarism. In order to deal with this problem, we suggest

a number of solutions, such as fine-tuning LLMs and machine learning-based classification based on static code metrics and code

embeddings obtained from Abstract Syntax Trees (AST). Our top-performing model outperforms current detectors (e.g.,

GPTSniffer) and gets an F1 score of 82.55. In addition to that, we carry out an ablation study to study the contribution of different

source code features to detection accuracy.

Index Terms - Plagiarism Prevention, AI-Generated Code, Human-Written Code, Large Language Model, Code Detection.

INTRODUCTION

Artificial Intelligence (AI), especially machine learning

methods, has been extensively used in software development,

most notably for source code generation [31], [59], [77], [78].

Latest advancements include Large Language Models (LLMs),

which have been pre-trained on large, diverse datasets and

shown state-of-the-art results for code generation [25], [54],

[56], [60], [73], [86]. Generative LLMs like ChatGPT [1],

Gemini Pro [10], and Starcoder2 [58] can generate code that is

close to what a human programmer would produce based on a

natural language description. While earlier studies have

investigated different fine-tuning and prompting methods [57],

[71] for enhancing the quality of code generation, various

LLM-driven tools (e.g., GitHub Copilot [9]) have been

introduced to aid developers in creating software architecture,

generating production code or test cases, and refactoring

existing code. As such, the utilization of LLMs in source code

generation and programming support has become more

common.

Nonetheless, the rampant adoption of LLMs has evoked

pertinent concerns over plagiarism, academic honesty, and code

originality. Research has shown that the quality and accuracy

of AI-generated code may be influenced by prompt wording

[61], and about 35% of code snippets produced by GitHub

Copilot contain security vulnerabilities [20], [38]. In addition,

cases of intellectual property infringement, like duplication of

licensed code, have been reported [87]. Thus, precise

separation of human-written and AI-generated code is

necessary to prevent plagiarism. While automated AI-detection

tools (e.g., GPT Zero [6], Sapling [7]) are available, they are

mostly intended for detecting AI-generated natural language

and do not do well in source code [64], [66]. For this missing

link, Nguyen et al. [64] introduced GPT Sniffer by fine-tuning

Code BERT [36] to identify code as human-written or LLM-

generated. Yet, their method only took into account Java code

generated by ChatGPT, not the generalizability to other

programming languages and LLMs.

In our research, we perform a thorough empirical analysis of

current AI detection tools to test their effectiveness in

identifying AI-generated source code as a means of preventing

plagiarism. Our goals are twofold: first, we compare popular AI

content detectors on different programming languages, tasks,

and generative LLMs; second, we investigate the state-of-the-

art detector GPTSniffer to understand its weaknesses and the

directions for improvement. We study the following questions

in detail:

RQ1: What is the effectiveness of existing AI detection tools at

detecting AI-generated source code for plagiarism detection?

RQ2: How can detection of AI-generated code be improved?

RQ3: How do source code features learned by embeddings

affect detection performance?

Our work makes the following contributions:

We show that current AI content detectors for text are

ineffective at detecting AI-generated source code in plagiarism

scenarios.

© 2025 IJSRET
2

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

We demonstrate that GPT Sniffer does not generalize well

across various programming languages, programming tasks,

and generative LLMs.

We propose machine learning and LLM-based classifiers that

perform better than other state-of-the-art methods and

demonstrate strong performance on various programming

languages, programming tasks, and LLMs.

The rest of this paper is structured as follows: Section II lays

out related work in AI-generated content detection and code

generation using LLMs. Section III outlines our data gathering,

model construction, and analysis process. Section IV shares

evaluation findings and insights. Section V addresses

implications of our findings. Section VI identifies potential

threats to validity, and Section VII concludes with a summary

of the most important results.

Related work and Background

A. Large Language Models for Code Generation

Improvements in Artificial Intelligence (AI) and Natural

Language Processing (NLP) have contributed to the emergence

of Large Language Models (LLMs) that can produce high-

quality code based on natural language descriptions [23].

Recently, models including CodeBERT [36], CodeT5 [84],

Starcoder2 [58], and ChatGPT [1] have been taught on

enormous datasets of both natural language and source code

[30] with remarkable performance in software-related tasks

[35], [40], [43]. These models are able to generate full

programs, debug programs, or create solutions from problem

statements, making them great resources for developers,

students, and educators [59]. Additionally, technologies such as

GitHub Copilot [9] have popularized AI-assisted coding, such

that developers can now create or complete code from

comments or descriptions themselves.

Still, with advancing LLMs, the line between human-authored

code and code generated by machines is thinning. AI-created

code may indeed replicate patterns of human coding, making it

hard to tell whether a student or programmer authored the code

independently. This calls for serious issues in academia,

particularly concerning plagiarism and originality in coding

assignments [56], [73], [86]. Here, we comprehensively

examined code generated by ChatGPT, Gemini Pro [10], GPT-

4 [4], and Starcoder2-Instruct (15B) [58], which are currently

state-of-the-art LLMs broadly utilized in educational and

professional settings [48], [51], [55], [69], [72], [73], [86]. This

choice provides us the opportunity to test not only the

detectability of AI code in general-purpose models (e.g.,

ChatGPT, GPT-4) but also in code-specific models (e.g.,

Starcoder2-Instruct).

Automated Detection of AI-Generated Code for Plagiarism

Prevention

The emergence of generative LLMs has boosted the need for

reliable techniques to identify AI-generated and human-

authored content, particularly for preventing plagiarism in

academic works. Some AI-generated content (AIGC) detectors,

including GPTZero [6] and Sapling [7], were created to detect

AI-written text with high accuracy in the detection of AI-

generated essays and documents. Open-source tools including

GPT-2 Detector [5], DetectGPT [63], and GLTR [79] have been

created to detect machine-generated text using token

probabilities and linguistic patterns.

However, these detectors primarily focus on natural language

text, not source code, which follows different syntactic and

structural rules [66]. As a result, their effectiveness in detecting

AI-generated code is limited [64], [66]. Nguyen et al. [64]

addressed this issue by proposing GPTSniffer, a detector based

on fine-tuned CodeBERT [36], to classify whether a code

snippet was written by an AI model or a human. While

GPTSniffer demonstrated encouraging results, its performance

was limited to ChatGPT-generated Java code and was not cross-

language generalizable. To fill this vacuum, our research

centre’s on testing several AI detectors on a variety of

programming languages—Python, C++, and Java—and

various LLMs, such as ChatGPT, GPT-4, Gemini Pro, and

Starcoder2-Instruct. To make our results robust and

generalizable, we used three established code generation

benchmarks: MBPP [21], HumanEval-X [90], and

CodeSearchNet [47].

Pre-trained Source Code Embeddings for Detection

Pre-trained code embeddings, which map code to structured

numerical representations, have been shown to be effective for

a range of Software Engineering (SE) tasks including

vulnerability detection [45], [70], program repair [27], [82],

[85], and code clone detection [24]. The embeddings encode

both the syntactic and semantic properties of source code so

that machine learning models learn code logic better [33], [89].

Recent work has improved these embeddings by incorporating

structural information from Abstract Syntax Trees (ASTs) in

addition to text data, enhancing their representation of

programming patterns. For example, Zhang et al. [89]

suggested breaking down large ASTs into smaller ASTs per

Instruction and encoding them with Recurrent Neural Networks

(RNNs) to better preserve code semantics. In the same manner,

ding et al. [33] combined text and structural representations in

order to develop more universal programming task-adaptable

embeddings.

Within plagiarism detection, these kinds of embeddings can

assist models in identifying slight nuances in differences

© 2025 IJSRET
3

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

between human-written and AI-generated code. Because AI-

generated code tends to follow predictable patterns or be

missing some stylistic flourishes that are found in human-

written code, embeddings are useful in helping to differentiate

between the two. We utilized in this research the CodeT5+

110M code embedding model [83], which has state-of-the-art

performance on code understanding and generation tasks. We

utilized the embeddings to represent source code and AST

structures and trained machine learning models that

differentiated human and AI-generated code with high

reliability and precision.

II. METHODOLOGY

The primary research question of this work is to assess the

effectiveness of current AI-generated code detection tools for

plagiarism prevention (RQ1). Another aim is to propose a

model which can effectively label a sample code snippet as

either human-written or AI-generated (RQ2). Lastly, we discuss

the impact of different code-level and structural features on the

performance of our top-performing detection model (RQ3).

The next subsections provide a detailed account of the adopted

methodology. Figure 1 demonstrates a diagram of the proposed

research framework.

Data Collection

To investigate the effectiveness of modern AI code detectors

and create a better classification method, we employed several

code benchmark datasets that include both human and

artificially generated programs, as recommended by previous

studies on AI code generation and plagiarism detection [51],

[55], [56], [69], [72], [73], [86]. We specifically chose three

well-known datasets — MBPP [21], HumanEval-X [90], and

CodeSearchNet [47].

The MBPP dataset comprises 974 Python programming

problems, each with solutions that have been written by

humans. The problems range from elementary mathematical

exercises to elementary functional programming exercises. The

HumanEval-X dataset has 820 samples made up of function

descriptions and related code in several programming

languages, such as Python, C++, Java, JavaScript, and Go. For

more comprehensive language coverage and plagiarism

detection evaluation, we also added CodeSearchNet,

containing approximately 2 million comment-human code

pairs from open-source GitHub projects.

For this work, we concentrated on three popular programming

languages — Python, Java, and C++ — for the sake of

experimental tractability and to achieve significant

generalizability across language classes [8], [14]. MBPP gives

Python code alone, whereas CodeSearchNet gives Java and

Python examples. To avoid duplication between sets of

datasets, we manually verified all problem statements and code

examples and again cross-checked them using the Nicad clone

detection tool [29] to ensure that there were no clones or

duplicates.

To produce the AI-generated equivalents of the human code, we

employed four popular Large Language Models (LLMs)

commonly used in code generation studies: ChatGPT [1],

Gemini Pro [10], GPT-4 [4], and StarCoder2-Instruct [58]. We

obtained source code from each model based on the respective

natural language input or comment of the chosen datasets.

Because of cost constraints and the expense of the OpenAI API

[11], rather than writing code for the whole CodeSearchNet

dataset (over 900k samples), we randomly chose 400 examples

each for Java and Python, ensuring a 95% confidence level with

a 5% margin of error for statistical accuracy.

Besides, code produced by LLM is non-deterministic and

shows creative variations with an increase in temperature

parameter [40], [67]. To make our evaluation representative of

a broad variety of AI code and its plagiarism detection

capability, we created several code chunks for every

specification using the same LLM at varied temperatures. For

experiments with controlled conditions, we employed

temperature = 0 and the standard temperature of each model

(ChatGPT, GPT-4, Starcoder2-Instruct = 1; Gemini Pro = 0.9)

to produce code according to the dataset specs.

© 2025 IJSRET
4

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

Once produced, the AI-generated code was merged with the

human-generated code present in the original datasets, thus

doubling the size of the datasets. We excluded cases where

LLMs were not able to produce code and removed code

snippets with syntax errors, as they would disrupt the static

code feature extraction (Section III-E). The final AI-generated

code dataset statistics are presented in Table I and Table II,

establishing a comprehensive foundation for plagiarism

detection and AI code identification evaluation.

Compared to AI Code Detection Tools

Some AI-generated content (AIGC) detectors have been

created to detect AI-generated natural language text. Like

previous research [66], our aim was to analyse the ability of

such tools to detect AI-generated source code and compare

them with our methods of plagiarism avoidance. We chose five

popular detectors: GPTZero [6], GPT-2 Output Detector [5],

DetectGPT [63], GLTR [79], and Sapling [7]. These detectors

were executed on human-coded code from our chosen datasets,

as well as on AI-coded code generated by our chosen LLMs at

various temperature settings.

Recently, Nguyen et al. [64] introduced GPTSniffer, a classifier

specifically designed to identify AI-generated code. It fine-

tunes CodeBERT [36] using human-written and ChatGPT-

generated code to classify a snippet as human-written or AI-

generated. In our study, GPTSniffer was included as a baseline

to systematically assess its performance on AI-generated code

across different LLMs, temperature settings, and programming

languages.

Evaluation Settings and Metrics

After prior research [64], we divided each data set into training

(80%), validation (10%), and testing (10%) sets. To avoid

overlap between data sets produced by distinct LLMs (e.g.,

HumanEval-C++-ChatGPT vs. HumanEval-C++-Gemini Pro),

we kept splits uniform. Every code snippet has a ground truth

label: Human or AI. The performance metric was computed by

comparing the predicted labels with these ground truths.

We employed Accuracy, True Positive Rate (TPR), True

Negative Rate (TNR), and F1-score. In the case here, Human is

the positive label, and AI is the negative label.

Accuracy = (TP + TN) / (TP + TN + FP + FN)

TPR (Recall) = TP / (TP + FN)

TNR = TN / (TN + FP)

F1-score is the harmonic mean of precision and recall:

Precision = TP / (TP + FP).

For label asymmetry, we computed two F1 types: Human F1

(Human = positive) and AI F1 (AI = positive). The Average F1-

score = (Human F1 + AI F1) / 2, which shows a balanced

estimate of detection performance.

For every suggested methodology, we tested in two

environments:

Within-dataset test: Training and testing using the same dataset

split.

Across-dataset evaluation: Training on one dataset (e.g.,

MBPP) and testing on another (e.g., HumanEval-X) to evaluate

generalizability. Baseline detectors were executed on the

testing splits for comparison.

LLM-based Approaches

Following the success of LLMs in code tasks like defect

detection and clone detection [65], we used LLMs to identify

AI-generated code. We employed zero-shot learning, in-context

learning, and fine-tuning. ChatGPT (GPT-3.5 turbo) was

chosen based on its state-of-the-art performance on software

engineering tasks [35], [40], [43]; GPT-4 and Gemini Pro were

not employed because of the limited fine-tuning capabilities.

Three code representations were utilized: Code Only (textual),

AST Only [42], and Combined (text + AST). AST

representations were created using Tree-Sitter [15], walking the

tree from root and adding node names with left/right suffixes.

These AST-based models performed strongly in earlier code

understanding tasks [65].

Zero-shot learning: ChatGPT was asked to identify each

snippet as being human- or AI-written, following standard best

practices [2], [3].

In-context learning: Demonstration examples (two human-

authored, two generated by AI) were extracted from the training

set with BM-25 [88] sorted by similarity to the test snippet.

Fine-tuning: ChatGPT was fine-tuned on one of the three code

representations with the associated labels using the OpenAI

API. Zero-shot models were only tested in the within-dataset

setting, whereas in-context and fine-tuned models were tested

in both within and across settings.

© 2025 IJSRET
5

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

Machine Learning Classifiers with Static Code Features

Shallow machine learning models continue to perform well in

software engineering activities when fed with pertinent features

[17], [32]. We derived 30 static code features from the dataset

by using Scitools Understand [13] and Tree-Sitter [15], such as

cyclomatic complexity, line counts, operators, keywords, and

identifiers [18]. Features were filtered such that only common

features valid across Python, Java, and C++ were included.

To eliminate multicollinearity, Variance Inflation Factor (VIF)

analysis was conducted, retaining features with VIF < 5, which

left 8 final features (Table III). Models experimented with are

Logistic Regression, KNN, MLP, SVM, Random Forest,

Decision Tree, Gradient Boost, and XGBoost, with

hyperparameters optimized using random grid search [49].

Machine Learning Classifiers with Code Embeddings

We also used code embeddings to more effectively extract

semantic information for AI vs human code classification. Pre-

trained CodeT5+ 110M embeddings [83] were applied to the

three code representations (Code Only, AST Only, Combined).

Embeddings were used as features for the same machine

learning classifiers described in Section III-E, and

hyperparameters were tuned using random grid search.

To further explore classification performance, cosine similarity

between embeddings of AI-written and human-written code

from the same specifications was calculated. This similarity

helped to explain differences in model performance,

particularly in the "Across" evaluation setting, where training

and testing datasets have different domains or languages.

We chose the CodeT5+ 110M embedding model [83] because

it was the newest and best code embedding model at the time

of conducting our experiments. CodeT5+ embeddings were

used as features to train the diverse set of machine learning

classifiers. In order to represent various facets of source code,

we used three code representations: Code Only (textual

information), AST Only [42] (structural representation), and

combined, where the two representations were combined by the

special separator token, as in [42]. With this, we could analyse

which representation—structural, textual, or combined—is

best suited to differentiate AI-written code from human-written

code.

The same machine learning models and training steps outlined

in Section III-E, such as hyperparameter tuning using random

grid search, were utilized. Figure 2 is a summary of this

embedding-based classification strategy

In addition, in order to examine performance differences

between detection methods, we compared the similarity

between AI and human-generated code to gain insights into

classification results. We utilized semantic embeddings of code

that preserve its underlying meaning [19], [81], [84], offering a

strong foundation for differentiating between AI and human-

generated code. Namely, we calculated the cosine similarity

between embeddings of human-written and AI-generated code

for the same programming task in our collection and took

averages. The average cosine similarities thus calculated were

utilized to determine semantic proximity between various large

language models (LLMs). This was done individually for each

of the four LLMs included in our experiment.

Since inconsistencies in training and testing datasets can affect

detection performance, we went further to explore such

inconsistencies and see why performance is worse in cross-

dataset ("Across") evaluations as opposed to within-dataset

("Within") evaluations. We considered the AST Only

embeddings since models trained on AST Only embeddings

had best performance in the "Within" setting. In the "Within"

evaluation, we averaged AST Only embeddings for training and

testing splits of each dataset and then computed the cosine

similarity between them. In the "Across" evaluation, we

© 2025 IJSRET
6

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

averaged training and testing split embeddings from various

datasets and calculated their cosine similarity. For each LLM,

we evaluated 30 pairs of training-testing splits, and the cosine

similarity values averaged were compared across evaluation

conditions.

Ablation Study

As AST Only embeddings reported the top performance across

all methods (Section IV-D), we performed an ablation study to

measure how different source code attributes influence

detection accuracy. We picked features among the 30 code

features that could be modified without altering the logic of the

code: Comment Lines, Variable Names, and Method Names.

Blank Lines were not included since they have no impact on

AST structure.

We identified the following code variants, which maintain

functional correctness:

 Comment-free code

 Code with consistent variable names (preceded with 'var'

and numbered sequentially starting from var1)

 Code with consistent method names (preceded with 'func'

and numbered sequentially from func1)

We generated these variants by using Tree Sitter to parse the

AST and make changes in the respective nodes. Comment

nodes and block comment nodes were eliminated to produce

comment-free code. Function declaration/definition nodes

were modified to generate code with uniform method names,

leaving language-specific functions (e.g., main in Java/C++,

constructors in Python) untouched. Likewise, variable

declaration nodes were renamed for code with uniform variable

names. Figure 3 shows an example of code with uniform

variable names. AST structures specific to each language were

used to apply modifications accordingly.

For instance, we adapted AST nodes including identifier,

pattern list, assignment, and typed parameter for Python code,

local variable declaration and formal parameter nodes for Java,

and init declarator nodes for C++. The complete

implementation details are available in our replication package

[12]. Subsequent to generating these code variants, we

extracted AST embeddings from each variant. Next, we trained

machine learning classifiers on these AST Only embeddings for

every variant type. To check how these changes affect

classification performance, we performed Welch's t-test [76]

and computed the effect size (Cohen's D [75]) from the average

F1-scores of each variant against the baseline code.

Results

Here, we present results of our research on the basis of the

research questions established in Section I. For brevity reasons,

we present results for the default temperature values utilized at

code generation time. The extra results for temperature 0 are

included in the supplementary materials. We discuss the

findings both under "Within" and "Across" evaluation settings

for a complete understanding of the results.

A. RQ1: How well can current AIGC detectors detect AI-

authored code compared to human-authored code for

plagiarism detection?

To respond to RQ1, we analyzed the performance of some

current AI-generated content (AIGC) detectors on our test

datasets (described in Section III). We tested five widely used

detectors initially developed for AI-generated text—GPTZero,

GPT-2 Output Detector, DetectGPT, GLTR, and Sapling—and

one code-oriented detector, GPTSniffer, which we use as our

baseline for comparison.

Table IV (AVG F1 stands for Average F1-score) is a summary

of the performance of these detectors when tested against AI-

generated code generated by different LLMs (ChatGPT, GPT-

4, Gemini Pro, and Starcoder2-Instruct) at their default

temperature levels (1 for ChatGPT, GPT-4, and Starcoder2-

Instruct; 0.9 for Gemini Pro). The value of each metric was

averaged over all datasets generated with the same model in

order to give a balanced performance overview.

Our evaluation showed that the output of these detectors did not

change much from temperature 0 to default values. As with

earlier findings in comparative studies, their precision was

largely less than 0.6, showing that they were not very reliable

at separating human-written code from AI-generated code. This

is due to the fact that the majority of AIGC detectors were

trained using natural language texts, rather than source code—

having dissimilar syntactic forms, semantic patterns, and

stylistic standards.

In addition, the performance of every detector differed based

on which LLM generated the code. DetectGPT, for instance,

commonly misidentified human and LLM-written code

(particularly from Gemini Pro and ChatGPT) as AI-written,

reflected in its high TNR but low TPR. In contrast, GPTZero

had a tendency to identify both human and AI-written samples

as human-written, with a bias in false negatives. Surprisingly,

code from Starcoder2-Instruct produced fairly higher F1-scores

in the majority of detectors, perhaps because it employs a more

organized and uniform style of code.

© 2025 IJSRET
7

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

In summary, the experiments prove that existing AIGC

detectors are quite ineffective in detecting AI-written source

code, thus making it difficult for plagiarism prevention in

educational and software development settings. In addition, the

F1-score averages from various LLMs varied little, implying

that neither the generative model's selection nor its temperature

level has an impact on detection. This underscores the urgency

of code-specific detection mechanisms with the ability to

comprehend programming syntax and logical order to detect

AI-written code versus code written by humans.

A. RQ1: How well can current AI-generated content (AIGC)

detectors identify AI-generated code from human-written code

for plagiarism detection?

In response to RQ1, we tested several AIGC detectors—

GPTZero, GPT-2 Output Detector, DetectGPT, GLTR, Sapling,

and the source code–specific GPTSniffer—on the test datasets

outlined in Section III. The performance measures (Accuracy,

Precision, Recall, and F1-score) were averaged for all datasets

produced by the same model for uniformity.

Table IV shows the mean F1-scores for every detector under

default temperature values (1 for ChatGPT, GPT-4, and

Starcoder2-Instruct; 0.9 for Gemini Pro). The outcomes show

that all the text-based detectors are poor, recording Accuracy

values of less than 0.6, indicating their poor capacity to discern

between AI-written and human code. Their poor performance

is due to training on natural language data, which differs

considerably from the formal syntax and logical structures

characteristic of programming languages.

We also saw variability in each detector's detection based on

the LLM with which the code was generated. For example,

DetectGPT frequently misidentified human-written and LLM-

generated code as AI-written (high TNR, low TPR), while

GPTZero had a tendency to mark both as human-written.

Surprisingly, Starcoder2-Instruct produced code that was

relatively easier to identify, which gave relatively higher F1-

scores. In general, there was no reliable or consistent detection

performance shown by any of the detectors across datasets or

models.

These findings validate that current AIGC detectors fail to

identify AI-generated source code irrespective of the applied

LLM or temperature value. This indicates a major loophole in

plagiarism detection tools, which highlights the requirement for

domain-specific models specifically trained on code and not

natural language.

Observation 1: Current natural language–grounded AIGC

detectors are weak in differentiating between human-crafted

and AI-generated source code.

B. RQ2: Is fine-tuned large language model (LLM) capable of

improving AI-generated code detection for plagiarism

prevention?

To enhance detection performance, we have experimented with

LLM-based methods using ChatGPT in three modes: zero-shot

learning, in-context learning, and fine-tuning. The models were

trained on three code representations—Code Only, AST Only,

and Combined—as described in Section III-D. The results

obtained by taking the average over datasets are shown in

Tables VI and VII.

The fine-tuned ChatGPT performed better than zero-shot and

in-context models, with over 80% Accuracy and F1-score on

some datasets (e.g., ChatGPT- and GPT-4-generated code in the

"Within" setting). This shows that fine-tuning using code-

specific datasets greatly enhances AI code detection

performance. Fine-tuned models also performed better when

the LLMs produced code with higher temperature settings,

which are more likely to add more creative variations.

But in the "Across" evaluation environment—where models

were run on datasets from other domains or languages—

Accuracy fell to a mere 40–50%, reflecting weak

generalization. For example, a model fine-tuned on Python

code (MBPP dataset) had just 50% Accuracy when run on Java

code (CodeSearchNet dataset). This points to fine-tuned

ChatGPT models being very effective within known datasets

but not being able to generalize to programming languages and

domains.

When trained using AST Only, performance fell further

(Average F1-score ≈ 59) than Code Only (≈ 82), indicating

syntactic trees alone don't reflect enough semantic variations to

© 2025 IJSRET
8

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

enable correct detection. Using both combined (Code + AST)

didn't provide meaningful improvement and sometimes

decreased performance by 10% or more.

Surprisingly, Gemini Pro–coded code was the most challenging

to recognize, with the lowest F1-scores (about 60%), perhaps

because it mimics human layout and logic coherence.

Observation 2: GPTSniffer, even though fine-tuned for code, is

inconsistent across models and languages, with poor

generalizability.

Observation 3: Fine-tuned ChatGPT far surpasses zero-shot

and in-context learning but is not adequate by itself for

recognizing AI-coded code when using AST representation.

C. RQ2 (continued): Can handcrafted machine learning

classifiers enhance AI code detection with static code metrics?

We then tested machine learning classifiers like Random Forest

(RF) and Gradient Boosting (GB) with static code features

(e.g., line count, function length, and frequency of variables).

RF performed best at temperature 0, and GB produced the best

F1-score at default temperature. In similarity with LLM-based

results, performance was averaged over datasets.

These classifiers surpassed other AIGC detectors, with RF

reaching more than 80% F1-score in detecting ChatGPT code

at temperature 0. Accuracy plummeted to approximately 66%

in the case of Gemini Pro, once more showing model-

dependent performance. The models did slightly better on high-

temperature generations with higher stylistic variability.

In the "Across" evaluation scenario, mean F1-scores fell to

approximately 50%, indicating poor generalizability across

datasets and languages.

Observation 4: Classifiers learned on static code features and

fine-tuned by machine learning can identify AI-generated code

better than current detectors but have different performances on

various LLMs and coding languages.

D. RQ2 (continued): Do embedding-based machine learning

models improve detection performance?

To further improve the accuracy of detection, we employed

code embeddings produced through CodeT5+ for the three

representations—Code Only, AST Only, and Combined. These

embeddings were utilized as machine learning input features

for models like SVM, MLP, and Logistic Regression (LR).

Among all the approaches, AST Only embedding-trained

models performed best, reporting F1-scores of 81.44

(temperature 0) and 82.55 (default temperature). This indicates

that embedding-based representations nicely encode the fine-

grained structural and semantic variations between AI-coded

and human-coded code. The models also performed

significantly better than GPTSniffer and other AIGC detectors.

But performance varied across LLMs again. Accuracy was up

to almost 90% for ChatGPT-generated code but fell to 73% for

Gemini Pro. Cosine similarity analysis of human and AI-

generated code embeddings showed high semantic overlap—

particularly for Gemini Pro (77.58%), which accounts for its

hard-to-detect difficulty.

In "Across" settings, mean F1-scores fell to approximately 42–

45%, affirming that cross-language and cross-domain

generalization is still a problem. It was further discovered that

similarity in embedding between training and testing sets was

20% below in "Across" settings, pointing to dataset

dissimilarity as a primary reason for performance decline.

Observation 5: Machine learning models trained using AST-

based embeddings yield the overall best performance but retain

mixed effectiveness across all LLMs and poor generalization

across domains.

E. RQ3: How do individual source code features affect the

efficacy of AI-generated code detection? (Ablation Study)

To see which code features contribute the most to detection

performance, we performed an ablation study with our best

model—GB classifier learned on AST embeddings (default

temperature). We generated code variants by deleting

comments, renaming variables to their first word, and renaming

methods, and compared the impact they have on F1-score.

As indicated in Table IX, comment removal caused the most

significant performance reduction (−3.82 in F1-score), yet

variable and method name uniformity did not make any impact.

A t-test established that the reduction was statistically not

significant (p = 0.4543, effect size = 0.2178), indicating that

even though comments add trivial context information, their

removal does not significantly affect detection accuracy.

Observation 6: Removing code comments slightly reduces

model performance, but the effect is statistically insignificant.

Discussion

Even though large language models like ChatGPT have shown

phenomenal performance on a broad spectrum of software

development tasks—ranging from code summarization,

improvement, and bug reproduction—theory suggests that their

zero-shot and in-context learning ability continues to be

restricted when it comes to identifying AI-generated code. With

mean F1-scores and Accuracy being approximately 40% across

datasets, these models are unable to consistently identify AI-

generated code versus human-written code when not fine-

tuned. This means that even the most sophisticated LLMs do

not possess the inbuilt capability to detect AI-generated source

code as plagiarism avoidance unless specially trained for this

task.

Conversely, our embedding-based and fine-tuned models

registered Accuracy and F1-scores of over 80%, far surpassing

current AIGC detectors like GPTZero, GLTR, and GPTSniffer.

These findings indicate code-specific fine-tuning and explicit

representations (e.g., AST embeddings) are essential to

enhancing detection performance. Nevertheless, whereas our

© 2025 IJSRET
9

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

approaches had strong performance within sets ("Within"

setting), their external generalization to new programming

languages and application domains ("Across" setting) was

poor, with performance falling below 50%.

This absence of cross-language generalization is similar to

issues observed in other software engineering tasks, including

defect prediction and code quality estimation, where models

learn on a single project but fail to generalize adequately across

others. Therefore, constructing generalizable, language-

agnostic plagiarism detection models is an open research

problem. Future research would need to investigate cross-

lingual embeddings, contrastive learning, or domain adaptation

in order to enhance robustness.

As for representations of code, none of the representations

consistently outperformed all other representations. Fine-tuned

versions of ChatGPT models performed best on Code-Only

representations, whereas machine learning models based on

AST-Only embeddings provided the highest Accuracy and F1-

scores overall. This indicates that structural (AST) and textual

(code tokens) information capture different aspects of AI-

generated code. An interesting avenue for future research is the

development of multi-modal models that integrate both

semantic and syntactic features of source code to boost

detection accuracy.

We also noticed that our models worked best in identifying

code produced by ChatGPT, GPT-4, and Starcoder2-Instruct,

while code produced by Gemini Pro was always harder to

detect. This may be due to Gemini Pro's more human-like code

production patterns, which may dilute the distinction between

real and synthetic writing. Alternatively, the existing

embeddings and features within our models might not be

attuned to the fine-grained stylistic differences between Gemini

Pro's output. With LLMs becoming stronger and generating

increasingly realistic code, more sophisticated and interpretable

detection methods will be necessary to ensure the integrity of

programming exams and plagiarism detection.

Lastly, our ablation study (Section IV-E) indicated that

excluding comments from code modestly reduced model

performance but that the effect was statistically insignificant.

This implies that comments provide minimal but non-essential

contextual hints in identifying human versus AI-written code.

In general, the results emphasize that although fine-tuned

models and code embeddings are a significant milestone in AI-

generated code detection in plagiarism prevention, the problem

of generalizability across languages and models is yet to be

solved. Future work needs to concentrate on strong, versatile,

and explainable detection systems that can adapt together with

fast-evolving code-generation technologies.

Threats To Validity

We have adopted every possible precaution to avoid potential

threats that could compromise the validity of our research on

identifying AI-generated code versus human-created code for

plagiarism detection. The subsequent subsections summarize

the primary concerns on validity and our mitigating measures.

Construct Validity

One possible threat is the design of the prompt utilized in

generating AI-based samples of code. The quality and variety

of the output code can be controlled by the way prompts are

constructed. In order to limit this problem, we adhered to

standard prompt engineering best practices and made sure that

every prompt clearly declared the programming task,

programming language, and environment. But we didn't use

sophisticated prompting strategies like Chain-of-Thought or

few-shot learning, which might have generated more high-

quality and human-like code. This is a limitation that could

impact the representativeness of our AI-generated samples and,

as a result, the detection performance.

Another issue is the bias in the dataset. Because the datasets

involved in this study were obtained from public repositories

like LeetCode and GitHub, there is a risk that some models

(e.g., ChatGPT, Gemini Pro, or Starcoder2-Instruct) could have

been pre-trained on somewhat similar data. Although large

language models (LLMs) produce code probabilistically and do

not directly retrieve it, similarities between training sets and

test sets may subtly affect the uniqueness of human-written

code compared to AI-generated code. This might result in a

situation where human-written code feels more familiar to the

LLM, which would have implications for ensuring the fairness

of the comparison. While this bias cannot be entirely avoided,

it is being partially alleviated by employing varying datasets

and several LLMs from various organizations (OpenAI,

Google, Hugging Face).

Internal Validity

LLMs are non-deterministic by design—i.e., they might

produce dissimilar outputs for the same input, especially under

higher temperature settings (e.g., 1.0). This could influence the

reproducibility of certain findings. To alleviate this, we

regulated temperature settings throughout experiments and

replicated generations where necessary so that our datasets

remained consistent.

Further, smaller errors in implementing the baseline plagiarism

detection models (e.g., GPTZero, GPT-2 Output Detector, and

GPTSniffer) might affect performance outcomes. To minimize

this threat, we utilized official implementations or public APIs

made available by the respective authors and checked outputs

for correctness.

© 2025 IJSRET
10

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

External Validity

The external validity of our results could be restricted to the

applied datasets, programming languages, and LLMs. But our

datasets encompass a wide range of problem statements and

coding areas, and the chosen LLMs—ChatGPT, Gemini Pro,

and Starcoder2-Instruct—are three prominent AI code

generators most commonly used by students and developers.

Our experiments also encompass different programming

languages (e.g., Python, Java, and C++) to raise the

generalizability of our findings.

Even with these efforts, we recognize that future LLMs will

likely have better naturalness or novel code-generation

patterns. As such, future work must reproduce and build upon

our results using more recent models and learning datasets to

maintain reliability of AI-powered plagiarism detection

systems.

III. CONCLUSION

Our research delved into the essential challenge of identifying

AI-generate code versus human-authored code to facilitate

effective plagiarism prevention in academic and professional

coding environments. Our results showed that current AI-

generated content (AIGC) detectors are ineffective in

classifying AI-generated source code accurately, stressing their

lack of reliability for use in code plagiarism detection systems.

To fill this gap, we proposed and tested three differing detection

methods:

LLM-based Detection,

Machine Learning based on Static Code Metrics, and

Machine Learning based on Code Embeddings.

Intensive experimentation was carried out on various datasets,

programming languages, and big language models (LLMs) like

ChatGPT, Gemini Pro, and Starcoder2-Instruct. Of all the

methods, the Machine Learning model trained on code

embeddings attained the maximum mean Average

F1-score of 82.55 under the "Within" evaluation condition,

showing high capability for detecting AI-generated code with

high precision and consistency.

In addition, an ablation study was conducted to examine the

impact of different source code features on detection

performance. The findings indicated that some structural and

contextual features—like code comments—have a minor

influence on model accuracy but not in drastically changing

overall results.

Lastly, this study provides a firm groundwork for AI-aided

plagiarism detection by providing feasible methods to

distinguish AI-authored from human-written code.

Nevertheless, our research further underscores the importance

of continuing studies toward better model generalizability on

various programming languages, datasets, and newly evolving

LLMs. Securing these detection mechanisms will be imperative

in upholding academic honesty and guaranteeing responsible

usage of generative AI in software design and education.

REFERENCES

1. OpenAI. (2023). ChatGPT: Optimizing language models

for dialogue. Retrieved from

https://openai.com/blog/chatgpt

2. Google DeepMind. (2024). Gemini Pro: Next-generation

multimodal LLM. Retrieved from https://deepmind.google

3. GitHub. (2023). GitHub Copilot Documentation.

Retrieved from https://docs.github.com/copilot

4. Brown, T. et al. (2020). Language Models are Few-Shot

Learners. NeurIPS.

5. Solaiman, I. et al. (2019). Release Strategies and the Social

Impacts of Language Models. arXiv:1908.09203.

6. Tian, E. (2023). GPTZero: Detecting AI-generated content

in text. Retrieved from https://gptzero.me

7. Sapling AI. (2023). AI Content Detection Tool Overview.

Retrieved from https://sapling.ai

8. Hendrycks, D. et al. (2021). Measuring Coding

Competence with HumanEval. arXiv:2107.03374.

9. Chen, M. et al. (2021). Evaluating Large Language Models

Trained on Code. arXiv:2107.03374.

© 2025 IJSRET
11

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

10. Li, Y. et al. (2023). StarCoder: May the source be with

you!. arXiv:2305.06161.

11. Feng, Z. et al. (2020). CodeBERT: A Pre-Trained Model

for Programming and Natural Languages.

arXiv:2002.08155.

12. Wang, Y. et al. (2021). CodeT5: Identifier-aware unified

pre-trained encoder-decoder models for code

understanding and generation. arXiv:2109.00859.

13. Nguyen, A., Pham, H., & Le, Q. (2023). GPTSniffer:

Detecting AI-Generated Code Using CodeBERT Fine-

Tuning. arXiv:2309.11812.

14. Zhang, J. et al. (2019). A Novel Neural Source Code

Representation Based on Abstract Syntax Tree. ICSE.

15. Ding, W. et al. (2022). Hybrid Code Representations for

Machine Learning Models. IEEE Transactions on

Software Engineering.

16. Srikant, S., & Aggarwal, V. (2021). Automatic Detection

of Plagiarism in Source Code. Journal of Educational Data

Mining.

17. Alvi, A. et al. (2023). Challenges of AI-Generated Code in

Education. Computers & Education, 194, 104687.

18. Rahman, M. et al. (2022). Analyzing Code Authorship

Patterns to Detect AI Assistance. ACM Transactions on

Software Engineering.

19. Yin, P. et al. (2018). Learning to Represent Edits. ICLR.

20. Copilot Security Study Group. (2023). Security

Vulnerabilities in AI-Generated Code. GitHub Research

Reports.

21. Austin, J. et al. (2021). Program Synthesis with Large

Language Models. NeurIPS.

22. Wang, K. et al. (2022). HumanEval-X: Cross-Language

Evaluation for LLMs in Code Generation.

arXiv:2209.04890.

23. Le, Q. et al. (2022). Pre-trained Transformers for Code

Generation Tasks. IEEE Access.

24. Saini, M. et al. (2021). Detecting Code Clones Using

Neural Code Embeddings. Information and Software

Technology.

25. Chen, X. et al. (2022). Empirical Evaluation of LLMs for

Software Engineering Tasks. ACM SIGSOFT.

26. Kalliamvakou, E. et al. (2023). AI and Developer

Productivity: GitHub Copilot in the Classroom. ACM

ICSE.

27. Gupta, D. et al. (2021). Program Repair via Pre-trained

Transformers. ACL.

28. Li, R. et al. (2022). Plagiarism Detection in Programming

Assignments Using Deep Learning. Computers &

Education, 181, 104442.

29. Iyer, S. et al. (2023). AI Detectors for Code: Limits and

Opportunities. ACM Computing Surveys.

30. OpenAI Research. (2024). GPT-4 Technical Report.

arXiv:2303.08774.

31. Hellendoorn, V. J., & Devanbu, P. (2019). Learning to

Predict Program Properties from Big Code.

Communications of the ACM, 62(3), 78–87.

32. Allamanis, M., Barr, E. T., Bird, C., & Sutton, C. (2018).

A Survey of Machine Learning for Big Code and

Naturalness. ACM Computing Surveys, 51(4), 81.

33. White, M., Tufano, M., Vendome, C., & Poshyvanyk, D.

(2016). Deep Learning Code Fragments for Code Clone

Detection. ASE Conference.

34. Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K. W.

(2021). Unified Pre-training for Code Understanding and

Generation. arXiv:2103.10504.

35. Kim, H., & Kim, S. (2022). Authorship Attribution of

Source Code Using Deep Neural Networks. Empirical

Software Engineering, 27(2).

36. Barkaoui, K. et al. (2023). Ethical Implications of Using

Generative AI in Academic Writing and Coding. AI Ethics

Journal, 4(2), 119–132.

37. Hussain, A. et al. (2023). Detecting Machine-Generated

Content in Programming Education Using Deep Learning

Models. IEEE Access, 11, 55748–55760.

38. Vyas, S., & Singh, P. (2022). Comparative Study of

Plagiarism Detection Techniques for Source Code.

International Journal of Computer Applications, 184(32),

45–53.

39. Lin, J. et al. (2023). Assessing the Reliability of AI Code

Generation Tools. arXiv:2305.09135.

40. Liu, X. et al. (2022). Cross-Language Code Embeddings

with Contrastive Learning. ACL.

41. Ahmed, F., & Ahmed, M. (2023). Fine-Tuning Pretrained

Transformers for Detecting AI-Generated Source Code.

IEEE Transactions on Artificial Intelligence.

42. Joshi, S. et al. (2023). Benchmarking LLMs for

Programming Education. ACM Conference on Learning at

Scale.

43. Mitrovic, A. et al. (2022). AI-Assisted Coding in

Education: Benefits and Risks. Computers & Education:

Artificial Intelligence, 3(2), 100095.

44. Zhao, R., & Liu, L. (2022). Explainable Detection of AI-

Generated Source Code. arXiv:2210.14102.

45. Le, H., Wang, Y., & Nguyen, A. (2023). Fine-tuned

Transformers for Software Vulnerability Detection. IEEE

Transactions on Software Engineering.

46. Dai, Z., & Le, Q. (2019). Transformer-XL: Attentive

Language Models Beyond a Fixed-Length Context. ACL.

47. Husain, H. et al. (2019). CodeSearchNet Challenge:

Evaluating the State of Semantic Code Search.

arXiv:1909.09436.

© 2025 IJSRET
12

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

48. Lison, P., & Kutuzov, A. (2023). Artificial Authorship

Detection: How Machines Recognize Machine-Generated

Text. arXiv:2304.00242.

49. Chan, A. et al. (2023). AI-Generated Code and Copyright:

Legal and Ethical Challenges. Journal of Law and

Technology, 38(1), 44–62.

50. Zhou, Y., & Xu, B. (2022). Detecting AI-Generated

Programming Solutions Using Statistical Code Features.

Journal of Systems and Software, 191, 111353.

51. • Idialu, O., Ade-Ibijola, A., & Ogunleye, O. (2024).

Whodunit: Classifying Code as Human Authored or GPT-

4 Generated — A Case Study on CodeChef Problems.

arXiv preprint arXiv:2403.04013.

52. • Pan, J., Zhang, M., & Liu, X. (2024). Assessing AI

Detectors in Identifying AI-Generated Code: Implications

for Education. arXiv preprint arXiv:2401.03676.

53. Vulnerabilities, and Complexity. arXiv preprint

arXiv:2508.21634.

54. Bashir, M., Memon, A., & Naqvi, S. (2025). Using Pseudo-

AI Submissions for Detecting AI-Generated Code.

