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Abstract - Artificial Intelligence (AI) methods, specifically Large Language Models (LLMs), are increasingly being employed by 

developers and students to produce source code. Though helpful, such AI-produced code is problematic in terms of plagiarism, 

originality, and academic honesty. Hence, differentiating between code written by humans and code generated by AI has become 

vital for the prevention of plagiarism. This article provides an empirical evaluation of current AI detection tools to determine 

how well they can detect AI-generated code in educational and coding environments. The findings indicate that most of the tools 

are ineffective and not generalizable enough to be useful for detecting plagiarism. In order to deal with this problem, we suggest 

a number of solutions, such as fine-tuning LLMs and machine learning-based classification based on static code metrics and code 

embeddings obtained from Abstract Syntax Trees (AST). Our top-performing model outperforms current detectors (e.g., 

GPTSniffer) and gets an F1 score of 82.55. In addition to that, we carry out an ablation study to study the contribution of different 

source code features to detection accuracy. 

Index Terms - Plagiarism Prevention, AI-Generated Code, Human-Written Code, Large Language Model, Code Detection. 

 

 

INTRODUCTION 

 
Artificial Intelligence (AI), especially machine learning 

methods, has been extensively used in software development, 

most notably for source code generation [31], [59], [77], [78]. 

Latest advancements include Large Language Models (LLMs), 

which have been pre-trained on large, diverse datasets and 

shown state-of-the-art results for code generation [25], [54], 

[56], [60], [73], [86]. Generative LLMs like ChatGPT [1], 

Gemini Pro [10], and Starcoder2 [58] can generate code that is 

close to what a human programmer would produce based on a 

natural language description. While earlier studies have 

investigated different fine-tuning and prompting methods [57], 

[71] for enhancing the quality of code generation, various 

LLM-driven tools (e.g., GitHub Copilot [9]) have been 

introduced to aid developers in creating software architecture, 

generating production code or test cases, and refactoring 

existing code. As such, the utilization of LLMs in source code 

generation and programming support has become more 

common. 

 

Nonetheless, the rampant adoption of LLMs has evoked 

pertinent concerns over plagiarism, academic honesty, and code 

originality. Research has shown that the quality and accuracy 

of AI-generated code may be influenced by prompt wording 

[61], and about 35% of code snippets produced by GitHub 

Copilot contain security vulnerabilities [20], [38]. In addition, 

cases of intellectual property infringement, like duplication of 

licensed code, have been reported [87]. Thus, precise 

separation of human-written and AI-generated code is 

necessary to prevent plagiarism. While automated AI-detection 

tools (e.g., GPT Zero [6], Sapling [7]) are available, they are 

mostly intended for detecting AI-generated natural language 

and do not do well in source code [64], [66]. For this missing 

link, Nguyen et al. [64] introduced GPT Sniffer by fine-tuning 

Code BERT [36] to identify code as human-written or LLM-

generated. Yet, their method only took into account Java code 

generated by ChatGPT, not the generalizability to other 

programming languages and LLMs. 

In our research, we perform a thorough empirical analysis of 

current AI detection tools to test their effectiveness in 

identifying AI-generated source code as a means of preventing 

plagiarism. Our goals are twofold: first, we compare popular AI 

content detectors on different programming languages, tasks, 

and generative LLMs; second, we investigate the state-of-the-

art detector GPTSniffer to understand its weaknesses and the 

directions for improvement. We study the following questions 

in detail: 

RQ1: What is the effectiveness of existing AI detection tools at 

detecting AI-generated source code for plagiarism detection? 

RQ2: How can detection of AI-generated code be improved? 

RQ3: How do source code features learned by embeddings 

affect detection performance? 

Our work makes the following contributions: 

We show that current AI content detectors for text are 

ineffective at detecting AI-generated source code in plagiarism 

scenarios. 
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We demonstrate that GPT Sniffer does not generalize well 

across various programming languages, programming tasks, 

and generative LLMs. 

We propose machine learning and LLM-based classifiers that 

perform better than other state-of-the-art methods and 

demonstrate strong performance on various programming 

languages, programming tasks, and LLMs. 

The rest of this paper is structured as follows: Section II lays 

out related work in AI-generated content detection and code 

generation using LLMs. Section III outlines our data gathering, 

model construction, and analysis process. Section IV shares 

evaluation findings and insights. Section V addresses 

implications of our findings. Section VI identifies potential 

threats to validity, and Section VII concludes with a summary 

of the most important results. 

  

Related work and Background  

A. Large Language Models for Code Generation 

Improvements in Artificial Intelligence (AI) and Natural 

Language Processing (NLP) have contributed to the emergence 

of Large Language Models (LLMs) that can produce high-

quality code based on natural language descriptions [23]. 

Recently, models including CodeBERT [36], CodeT5 [84], 

Starcoder2 [58], and ChatGPT [1] have been taught on 

enormous datasets of both natural language and source code 

[30] with remarkable performance in software-related tasks 

[35], [40], [43]. These models are able to generate full 

programs, debug programs, or create solutions from problem 

statements, making them great resources for developers, 

students, and educators [59]. Additionally, technologies such as 

GitHub  Copilot [9] have popularized AI-assisted coding, such 

that developers can now create or complete code from 

comments or descriptions themselves. 

 

Still, with advancing LLMs, the line between human-authored 

code and code generated by machines is thinning. AI-created 

code may indeed replicate patterns of human coding, making it 

hard to tell whether a student or programmer authored the code 

independently. This calls for serious issues in academia, 

particularly concerning plagiarism and originality in coding 

assignments [56], [73], [86]. Here, we comprehensively 

examined code generated by ChatGPT, Gemini Pro [10], GPT-

4 [4], and Starcoder2-Instruct (15B) [58], which are currently 

state-of-the-art LLMs broadly utilized in educational and 

professional settings [48], [51], [55], [69], [72], [73], [86]. This 

choice provides us the opportunity to test not only the 

detectability of AI code in general-purpose models (e.g., 

ChatGPT, GPT-4) but also in code-specific models (e.g., 

Starcoder2-Instruct). 

 

Automated Detection of AI-Generated Code for Plagiarism 

Prevention 

The emergence of generative LLMs has boosted the need for 

reliable techniques to identify AI-generated and human-

authored content, particularly for preventing plagiarism in 

academic works. Some AI-generated content (AIGC) detectors, 

including GPTZero [6] and Sapling [7], were created to detect 

AI-written text with high accuracy in the detection of AI-

generated essays and documents. Open-source tools including 

GPT-2 Detector [5], DetectGPT [63], and GLTR [79] have been 

created to detect machine-generated text using token 

probabilities and linguistic patterns. 

 

However, these detectors primarily focus on natural language 

text, not source code, which follows different syntactic and 

structural rules [66]. As a result, their effectiveness in detecting 

AI-generated code is limited [64], [66]. Nguyen et al. [64] 

addressed this issue by proposing GPTSniffer, a detector based 

on fine-tuned CodeBERT [36], to classify whether a code 

snippet was written by an AI model or a human. While 

GPTSniffer demonstrated encouraging results, its performance 

was limited to ChatGPT-generated Java code and was not cross-

language generalizable. To fill this vacuum, our research 

centre’s on testing several AI detectors on a variety of 

programming languages—Python, C++, and Java—and 

various LLMs, such as ChatGPT, GPT-4, Gemini Pro, and 

Starcoder2-Instruct. To make our results robust and 

generalizable, we used three established code generation 

benchmarks: MBPP [21], HumanEval-X [90], and 

CodeSearchNet [47].  

 

Pre-trained Source Code Embeddings for Detection 

Pre-trained code embeddings, which map code to structured 

numerical representations, have been shown to be effective for 

a range of Software Engineering (SE) tasks including 

vulnerability detection [45], [70], program repair [27], [82], 

[85], and code clone detection [24]. The embeddings encode 

both the syntactic and semantic properties of source code so 

that machine learning models learn code logic better [33], [89]. 

Recent work has improved these embeddings by incorporating 

structural information from Abstract Syntax Trees (ASTs) in 

addition to text data, enhancing their representation of 

programming patterns. For example, Zhang et al. [89] 

suggested breaking down large ASTs into smaller ASTs per 

Instruction and encoding them with Recurrent Neural Networks 

(RNNs) to better preserve code semantics. In the same manner, 

ding et al. [33] combined text and structural representations in 

order to develop more universal programming task-adaptable 

embeddings. 

Within plagiarism detection, these kinds of embeddings can 

assist models in identifying slight nuances in differences 
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between human-written and AI-generated code. Because AI-

generated code tends to follow predictable patterns or be 

missing some stylistic flourishes that are found in human-

written code, embeddings are useful in helping to differentiate 

between the two. We utilized in this research the CodeT5+ 

110M code embedding model [83], which has state-of-the-art 

performance on code understanding and generation tasks. We 

utilized the embeddings to represent source code and AST 

structures and trained machine learning models that 

differentiated human and AI-generated code with high 

reliability and precision. 

  

II. METHODOLOGY 

 
The primary research question of this work is to assess the 

effectiveness of current AI-generated code detection tools for 

plagiarism prevention (RQ1). Another aim is to propose a 

model which can effectively label a sample code snippet as 

either human-written or AI-generated (RQ2). Lastly, we discuss 

the impact of different code-level and  structural features on the 

performance of our top-performing detection model (RQ3). 

The next subsections provide a detailed account of the adopted 

methodology. Figure 1 demonstrates a diagram of the proposed 

research framework. 

 

Data Collection 

To investigate the effectiveness of modern AI code detectors 

and create a better classification method, we employed several 

code benchmark datasets that include both human and 

artificially generated programs, as recommended by previous 

studies on AI code generation and plagiarism detection [51], 

[55], [56], [69], [72], [73], [86]. We specifically chose three 

well-known datasets — MBPP [21], HumanEval-X [90], and 

CodeSearchNet [47]. 

 

The MBPP dataset comprises 974 Python programming 

problems, each with solutions that have been written by 

humans. The problems range from elementary mathematical 

exercises to elementary functional programming exercises. The 

HumanEval-X dataset has 820 samples made up of function 

descriptions and related code in several programming 

languages, such as Python, C++, Java, JavaScript, and Go. For 

more comprehensive language coverage and plagiarism 

detection evaluation, we also added CodeSearchNet, 

containing approximately 2 million comment-human code 

pairs from open-source GitHub projects. 

 

For this work, we concentrated on three popular programming 

languages — Python, Java, and C++ — for the sake of 

experimental tractability and to achieve significant 

generalizability across language classes [8], [14]. MBPP gives 

Python code alone, whereas CodeSearchNet gives Java and 

Python examples. To avoid duplication between sets of 

datasets, we manually verified all problem statements and code 

examples and again cross-checked them using the Nicad clone 

detection tool [29] to ensure that there were no clones or 

duplicates. 

 

To produce the AI-generated equivalents of the human code, we 

employed four popular Large Language Models (LLMs) 

commonly used in code generation studies: ChatGPT [1], 

Gemini Pro [10], GPT-4 [4], and StarCoder2-Instruct [58]. We 

obtained source code from each model based on the respective 

natural language input or comment of the chosen datasets. 

Because of cost constraints and the expense of the OpenAI API 

[11], rather than writing code for the whole CodeSearchNet 

dataset (over 900k samples), we randomly chose 400  examples 

each for Java and Python, ensuring a 95% confidence level with 

a 5% margin of error for statistical accuracy. 

 

 
Besides, code produced by LLM is non-deterministic and 

shows creative variations with an increase in temperature 

parameter [40], [67]. To make our evaluation representative of 

a broad variety of AI code and its plagiarism detection 

capability, we created several code chunks for every 

specification using the same LLM at varied temperatures. For 

experiments with controlled conditions, we employed 

temperature = 0 and the standard temperature of each model 

(ChatGPT, GPT-4, Starcoder2-Instruct = 1; Gemini Pro = 0.9) 

to produce code according to the dataset specs. 
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Once produced, the AI-generated code was merged with the 

human-generated code present in the original datasets, thus 

doubling the size of the datasets. We excluded cases where 

LLMs were not able to produce code and removed code 

snippets with syntax errors, as they would disrupt the static 

code feature extraction (Section III-E). The final AI-generated 

code dataset statistics are presented in Table I and Table II, 

establishing a comprehensive foundation for plagiarism 

detection and AI code identification evaluation. 

 

 
 

Compared to AI Code Detection Tools 

Some AI-generated content (AIGC) detectors have been 

created to detect AI-generated natural language text. Like 

previous research [66], our aim was to analyse the ability of 

such tools to detect AI-generated source code and compare 

them with our methods of plagiarism avoidance. We chose five 

popular detectors: GPTZero [6], GPT-2 Output Detector [5], 

DetectGPT [63], GLTR [79], and Sapling [7]. These detectors 

were executed on human-coded code from our chosen datasets, 

as well as on AI-coded code generated by our chosen LLMs at 

various temperature settings. 

 

Recently, Nguyen et al. [64] introduced GPTSniffer, a classifier 

specifically designed to identify AI-generated code. It fine-

tunes CodeBERT [36] using human-written and ChatGPT-

generated code to classify a snippet as human-written or AI-

generated. In our study, GPTSniffer was included as a baseline 

to systematically assess its performance on AI-generated code 

across different LLMs, temperature settings, and programming 

languages. 

 

Evaluation Settings and Metrics 

After prior research [64], we divided each data set into training 

(80%), validation (10%), and testing (10%) sets. To avoid 

overlap between data sets produced by distinct LLMs (e.g., 

HumanEval-C++-ChatGPT vs. HumanEval-C++-Gemini Pro), 

we kept splits uniform. Every code snippet has a ground truth 

label: Human or AI. The performance metric was computed by 

comparing the predicted labels with these ground truths. 

 

We employed Accuracy, True Positive Rate (TPR), True 

Negative Rate (TNR), and F1-score. In the case here, Human is 

the positive label, and AI is the negative label. 

 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

TPR (Recall) = TP / (TP + FN) 

TNR = TN / (TN + FP) 

F1-score is the harmonic mean of precision and recall: 

Precision = TP / (TP + FP). 

For label asymmetry, we computed two F1 types: Human F1 

(Human = positive) and AI F1 (AI = positive). The Average F1-

score = (Human F1 + AI F1) / 2, which shows a balanced 

estimate of detection performance.  

For every suggested methodology, we tested in two 

environments: 

Within-dataset test: Training and testing using the same dataset 

split. 

Across-dataset evaluation: Training on one dataset (e.g., 

MBPP) and testing on another (e.g., HumanEval-X) to evaluate 

generalizability. Baseline detectors were executed on the 

testing splits for comparison. 

 

LLM-based Approaches 

Following the success of LLMs in code tasks like defect 

detection and clone detection [65], we used LLMs to identify 

AI-generated code. We employed zero-shot learning, in-context 

learning, and fine-tuning. ChatGPT (GPT-3.5 turbo) was 

chosen based on its state-of-the-art performance on software 

engineering tasks [35], [40], [43]; GPT-4 and Gemini Pro were 

not employed because of the limited fine-tuning capabilities. 

Three code representations were utilized: Code Only (textual), 

AST Only [42], and Combined (text + AST). AST 

representations were created using Tree-Sitter [15], walking the 

tree from root and adding node names with left/right suffixes. 

These AST-based models performed strongly in earlier code 

understanding tasks [65]. 

Zero-shot learning: ChatGPT was asked to identify each 

snippet as being human- or AI-written, following standard best 

practices [2], [3]. 

In-context learning: Demonstration examples (two human-

authored, two generated by AI) were extracted from the training 

set with BM-25 [88] sorted by similarity to the test snippet. 

Fine-tuning: ChatGPT was fine-tuned on one of the three code 

representations with the associated labels using the OpenAI 

API. Zero-shot models were only tested in the within-dataset 

setting, whereas in-context and fine-tuned models were tested 

in both within and across settings. 
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Machine Learning Classifiers with Static Code Features 

Shallow machine learning models continue to perform well in 

software engineering activities when fed with pertinent features 

[17], [32]. We derived 30 static code features from the dataset 

by using Scitools Understand [13] and Tree-Sitter [15], such as 

cyclomatic complexity, line counts, operators, keywords, and 

identifiers [18]. Features were filtered such that only common 

features valid across Python, Java, and C++ were included. 

 

To eliminate multicollinearity, Variance Inflation Factor (VIF) 

analysis was conducted, retaining features with VIF < 5, which 

left 8 final features (Table III). Models experimented with are 

Logistic Regression, KNN, MLP, SVM, Random Forest, 

Decision Tree, Gradient Boost, and XGBoost, with 

hyperparameters optimized using random grid search [49]. 

 

Machine Learning Classifiers with Code Embeddings 

We also used code embeddings to more effectively extract 

semantic information for AI vs human code classification. Pre-

trained CodeT5+ 110M embeddings [83] were applied to the 

three code representations (Code Only, AST Only, Combined). 

Embeddings were used as features for the same machine 

learning classifiers described in Section III-E, and 

hyperparameters were tuned using random grid search. 

To further explore classification performance, cosine similarity 

between embeddings of AI-written and human-written code 

from the same specifications was calculated. This similarity 

helped to explain differences in model performance, 

particularly in the "Across" evaluation setting, where training 

and testing datasets have different domains or languages. 

 

 
We chose the CodeT5+ 110M embedding model [83] because 

it was the newest and best code embedding model at the time 

of conducting our experiments. CodeT5+ embeddings were 

used as features to train the diverse set of machine learning 

classifiers. In order to represent various facets of source code, 

we used three code representations: Code Only (textual 

information), AST Only [42] (structural representation), and 

combined, where the two representations were combined by the 

special separator token, as in [42]. With this, we could analyse 

which representation—structural, textual, or combined—is 

best suited to differentiate AI-written code from human-written 

code. 

 

The same machine learning models and training steps outlined 

in Section III-E, such as hyperparameter tuning using random 

grid search, were utilized. Figure 2 is a summary of this 

embedding-based classification strategy 

 

 
In addition, in order to examine performance differences 

between detection methods, we compared the similarity 

between AI and human-generated code to gain insights into 

classification results. We utilized semantic embeddings of code 

that preserve its underlying meaning [19], [81], [84], offering a 

strong foundation for differentiating between AI and human-

generated code. Namely, we calculated the cosine similarity 

between embeddings of human-written and AI-generated code 

for the same programming task in our collection and took 

averages. The average cosine similarities thus calculated were 

utilized to determine semantic proximity between various large 

language models (LLMs). This was done individually for each 

of the four LLMs included in our experiment. 

 

Since inconsistencies in training and testing datasets can affect 

detection performance, we went further to explore such 

inconsistencies and see why performance is worse in cross-

dataset ("Across") evaluations as opposed to within-dataset 

("Within") evaluations. We considered the AST Only 

embeddings since models trained on AST Only embeddings 

had best performance in the "Within" setting. In the "Within" 

evaluation, we averaged AST Only embeddings for training and 

testing splits of each dataset and then computed the cosine 

similarity between them. In the "Across" evaluation, we 
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averaged training and testing split embeddings from various 

datasets and calculated their cosine similarity. For each LLM, 

we evaluated 30 pairs of training-testing splits, and the cosine 

similarity values averaged were compared across evaluation 

conditions. 

 

Ablation Study 

As AST Only embeddings reported the top performance across 

all methods (Section IV-D), we performed an ablation study to 

measure how different source code attributes influence 

detection accuracy. We picked features among the 30 code 

features that could be modified without altering the logic of the 

code: Comment Lines, Variable Names, and Method Names. 

Blank Lines were not included since they have no impact on 

AST structure. 

We identified the following code variants, which maintain 

functional correctness: 

 Comment-free code 

 Code with consistent variable names (preceded with 'var' 

and numbered sequentially starting from var1) 

 Code with consistent method names (preceded with 'func' 

and numbered sequentially from func1) 

We generated these variants by using Tree Sitter to parse the 

AST and make changes in the respective nodes. Comment 

nodes and block comment nodes were eliminated to produce 

comment-free code. Function declaration/definition nodes 

were modified to generate code with uniform method names, 

leaving language-specific functions (e.g., main in Java/C++, 

constructors in Python) untouched. Likewise, variable 

declaration nodes were renamed for code with uniform variable 

names. Figure 3 shows an example of code with uniform 

variable names. AST structures specific to each language were 

used to apply modifications accordingly. 

 

For instance, we adapted AST nodes including identifier, 

pattern list, assignment, and typed parameter for Python code, 

local variable declaration and formal parameter nodes for Java, 

and init declarator nodes for C++. The complete 

implementation details are available in our replication package 

[12]. Subsequent to generating these code variants, we 

extracted AST embeddings from each variant. Next, we trained 

machine learning classifiers on these AST Only embeddings for 

every variant type. To check how these changes affect 

classification performance, we performed Welch's t-test [76] 

and computed the effect size (Cohen's D [75]) from the average 

F1-scores of each variant against the baseline code. 

 

Results  

Here, we present results of our research on the basis of the 

research questions established in Section I. For brevity reasons, 

we present results for the default temperature values utilized at 

code generation time. The extra results for temperature 0 are 

included in the supplementary materials. We discuss the 

findings both under "Within" and "Across" evaluation settings 

for a complete understanding of the results. 

A. RQ1: How well can current AIGC detectors detect AI-

authored code compared to human-authored code for 

plagiarism detection? 

To respond to RQ1, we analyzed the performance of some 

current AI-generated content (AIGC) detectors on our test 

datasets (described in Section III). We tested five widely used 

detectors initially developed for AI-generated text—GPTZero, 

GPT-2 Output Detector, DetectGPT, GLTR, and Sapling—and 

one code-oriented detector, GPTSniffer, which we use as our 

baseline for comparison. 

 

Table IV (AVG F1 stands for Average F1-score) is a summary 

of the performance of these detectors when tested against AI-

generated code generated by different LLMs (ChatGPT, GPT-

4, Gemini Pro, and Starcoder2-Instruct) at their default 

temperature levels (1 for ChatGPT, GPT-4, and Starcoder2-

Instruct; 0.9 for Gemini Pro). The value of each metric was 

averaged over all datasets generated with the same model in 

order to give a balanced performance overview. 

 

 
Our evaluation showed that the output of these detectors did not 

change much from temperature 0 to default values. As with 

earlier findings in comparative studies, their precision was 

largely less than 0.6, showing that they were not very reliable 

at separating human-written code from AI-generated code. This 

is due to the fact that the majority of AIGC detectors were 

trained using natural language texts, rather than source code—

having dissimilar syntactic forms, semantic patterns, and 

stylistic standards. 

 

In addition, the performance of every detector differed based 

on which LLM generated the code. DetectGPT, for instance, 

commonly misidentified human and LLM-written code 

(particularly from Gemini Pro and ChatGPT) as AI-written, 

reflected in its high TNR but low TPR. In contrast, GPTZero 

had a tendency to identify both human and AI-written samples 

as human-written, with a bias in false negatives. Surprisingly, 

code from Starcoder2-Instruct produced fairly higher F1-scores 

in the majority of detectors, perhaps because it employs a more 

organized and uniform style of code. 
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In summary, the experiments prove that existing AIGC 

detectors are quite ineffective in detecting AI-written source 

code, thus making it difficult for plagiarism prevention in 

educational and software development settings. In addition, the 

F1-score averages from various LLMs varied little, implying 

that neither the generative model's selection nor its temperature 

level has an impact on detection. This underscores the urgency 

of code-specific detection mechanisms with the ability to 

comprehend programming syntax and logical order to detect 

AI-written code versus code written by humans. 

 

 
A. RQ1: How well can current AI-generated content (AIGC) 

detectors identify AI-generated code from human-written code 

for plagiarism detection? 

In response to RQ1, we tested several AIGC detectors—

GPTZero, GPT-2 Output Detector, DetectGPT, GLTR, Sapling, 

and the source code–specific GPTSniffer—on the test datasets 

outlined in Section III. The performance measures (Accuracy, 

Precision, Recall, and F1-score) were averaged for all datasets 

produced by the same model for uniformity. 

Table IV shows the mean F1-scores for every detector under 

default temperature values (1 for ChatGPT, GPT-4, and 

Starcoder2-Instruct; 0.9 for Gemini Pro). The outcomes show 

that all the text-based detectors are poor, recording Accuracy 

values of less than 0.6, indicating their poor capacity to discern 

between AI-written and human code. Their poor performance 

is due to training on natural language data, which differs 

considerably from the formal syntax and logical structures 

characteristic of programming languages. 

We also saw variability in each detector's detection based on 

the LLM with which the code was generated. For example, 

DetectGPT frequently misidentified human-written and LLM-

generated code as AI-written (high TNR, low TPR), while 

GPTZero had a tendency to mark both as human-written. 

Surprisingly, Starcoder2-Instruct produced code that was 

relatively easier to identify, which gave relatively higher F1-

scores. In general, there was no reliable or consistent detection 

performance shown by any of the detectors across datasets or 

models. 

 

These findings validate that current AIGC detectors fail to 

identify AI-generated source code irrespective of the applied 

LLM or temperature value. This indicates a major loophole in 

plagiarism detection tools, which highlights the requirement for 

domain-specific models specifically trained on code and not 

natural language. 

Observation 1: Current natural language–grounded AIGC 

detectors are weak in differentiating between human-crafted 

and AI-generated source code. 

B. RQ2: Is fine-tuned large language model (LLM) capable of 

improving AI-generated code detection for plagiarism 

prevention? 

To enhance detection performance, we have experimented with 

LLM-based methods using ChatGPT in three modes: zero-shot 

learning, in-context learning, and fine-tuning. The models were 

trained on three code representations—Code Only, AST Only, 

and Combined—as described in Section III-D. The results 

obtained by taking the average over datasets are shown in 

Tables VI and VII. 

The fine-tuned ChatGPT performed better than zero-shot and 

in-context models, with over 80% Accuracy and F1-score on 

some datasets (e.g., ChatGPT- and GPT-4-generated code in the 

"Within" setting). This shows that fine-tuning using code-

specific datasets greatly enhances AI code detection 

performance. Fine-tuned models also performed better when 

the LLMs produced code with higher temperature settings, 

which are more likely to add more creative variations. 

But in the "Across" evaluation environment—where models 

were run on datasets from other domains or languages—

Accuracy fell to a mere 40–50%, reflecting weak 

generalization. For example, a model fine-tuned on Python 

code (MBPP dataset) had just 50% Accuracy when run on Java 

code (CodeSearchNet dataset). This points to fine-tuned 

ChatGPT models being very effective within known datasets 

but not being able to generalize to programming languages and 

domains. 

 

When trained using AST Only, performance fell further 

(Average F1-score ≈ 59) than Code Only (≈ 82), indicating 

syntactic trees alone don't reflect enough semantic variations to 
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enable correct detection. Using both combined (Code + AST) 

didn't provide meaningful improvement and sometimes 

decreased performance by 10% or more. 

Surprisingly, Gemini Pro–coded code was the most challenging 

to recognize, with the lowest F1-scores (about 60%), perhaps 

because it mimics human layout and logic coherence. 

Observation 2: GPTSniffer, even though fine-tuned for code, is 

inconsistent across models and languages, with poor 

generalizability. 

Observation 3: Fine-tuned ChatGPT far surpasses zero-shot 

and in-context learning but is not adequate by itself for 

recognizing AI-coded code when using AST representation. 

C. RQ2 (continued): Can handcrafted machine learning 

classifiers enhance AI code detection with static code metrics? 

We then tested machine learning classifiers like Random Forest 

(RF) and Gradient Boosting (GB) with static code features 

(e.g., line count, function length, and frequency of variables). 

RF performed best at temperature 0, and GB produced the best 

F1-score at default temperature. In similarity with LLM-based 

results, performance was averaged over datasets. 

These classifiers surpassed other AIGC detectors, with RF 

reaching more than 80% F1-score in detecting ChatGPT code 

at temperature 0. Accuracy plummeted to approximately 66% 

in the case of Gemini Pro, once more showing model-

dependent performance. The models did slightly better on high-

temperature generations with higher stylistic variability. 

In the "Across" evaluation scenario, mean F1-scores fell to 

approximately 50%, indicating poor generalizability across 

datasets and languages. 

Observation 4: Classifiers learned on static code features and 

fine-tuned by machine learning can identify AI-generated code 

better than current detectors but have different performances on 

various LLMs and coding languages. 

D. RQ2 (continued): Do embedding-based machine learning 

models improve detection performance? 

To further improve the accuracy of detection, we employed 

code embeddings produced through CodeT5+ for the three 

representations—Code Only, AST Only, and Combined. These 

embeddings were utilized as machine learning input features 

for models like SVM, MLP, and Logistic Regression (LR). 

Among all the approaches, AST Only embedding-trained 

models performed best, reporting F1-scores of 81.44 

(temperature 0) and 82.55 (default temperature). This indicates 

that embedding-based representations nicely encode the fine-

grained structural and semantic variations between AI-coded 

and human-coded code. The models also performed 

significantly better than GPTSniffer and other AIGC detectors. 

But performance varied across LLMs again. Accuracy was up 

to almost 90% for ChatGPT-generated code but fell to 73% for 

Gemini Pro. Cosine similarity analysis of human and AI-

generated code embeddings showed high semantic overlap—

particularly for Gemini Pro (77.58%), which accounts for its 

hard-to-detect difficulty. 

In "Across" settings, mean F1-scores fell to approximately 42–

45%, affirming that cross-language and cross-domain 

generalization is still a problem. It was further discovered that 

similarity in embedding between training and testing sets was 

20% below in "Across" settings, pointing to dataset 

dissimilarity as a primary reason for performance decline. 

Observation 5: Machine learning models trained using AST-

based embeddings yield the overall best performance but retain 

mixed effectiveness across all LLMs and poor generalization 

across domains. 

E. RQ3: How do individual source code features affect the 

efficacy of AI-generated code detection? (Ablation Study) 

To see which code features contribute the most to detection 

performance, we performed an ablation study with our best 

model—GB classifier learned on AST embeddings (default 

temperature). We generated code variants by deleting 

comments, renaming variables to their first word, and renaming 

methods, and compared the impact they have on F1-score. 

As indicated in Table IX, comment removal caused the most 

significant performance reduction (−3.82 in F1-score), yet 

variable and method name uniformity did not make any impact. 

A t-test established that the reduction was statistically not 

significant (p = 0.4543, effect size = 0.2178), indicating that 

even though comments add trivial context information, their 

removal does not significantly affect detection accuracy. 

Observation 6: Removing code comments slightly reduces 

model performance, but the effect is statistically insignificant. 

 

Discussion 

Even though large language models like ChatGPT have shown 

phenomenal performance on a broad spectrum of software 

development tasks—ranging from code summarization, 

improvement, and bug reproduction—theory suggests that their 

zero-shot and in-context learning ability continues to be 

restricted when it comes to identifying AI-generated code. With 

mean F1-scores and Accuracy being approximately 40% across 

datasets, these models are unable to consistently identify AI-

generated code versus human-written code when not fine-

tuned. This means that even the most sophisticated LLMs do 

not possess the inbuilt capability to detect AI-generated source 

code as plagiarism avoidance unless specially trained for this 

task. 

 

Conversely, our embedding-based and fine-tuned models 

registered Accuracy and F1-scores of over 80%, far surpassing 

current AIGC detectors like GPTZero, GLTR, and GPTSniffer. 

These findings indicate code-specific fine-tuning and explicit 

representations (e.g., AST embeddings) are essential to 

enhancing detection performance. Nevertheless, whereas our 
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approaches had strong performance within sets ("Within" 

setting), their external generalization to new programming 

languages and application domains ("Across" setting) was 

poor, with performance falling below 50%. 

This absence of cross-language generalization is similar to 

issues observed in other software engineering tasks, including 

defect prediction and code quality estimation, where models 

learn on a single project but fail to generalize adequately across 

others. Therefore, constructing generalizable, language-

agnostic plagiarism detection models is an open research 

problem. Future research would need to investigate cross-

lingual embeddings, contrastive learning, or domain adaptation 

in order to enhance robustness. 

 

As for representations of code, none of the representations 

consistently outperformed all other representations. Fine-tuned 

versions of ChatGPT models performed best on Code-Only 

representations, whereas machine learning models based on 

AST-Only embeddings provided the highest Accuracy and F1-

scores overall. This indicates that structural (AST) and textual 

(code tokens) information capture different aspects of AI-

generated code. An interesting avenue for future research is the 

development of multi-modal models that integrate both 

semantic and syntactic features of source code to boost 

detection accuracy. 

 

We also noticed that our models worked best in identifying 

code produced by ChatGPT, GPT-4, and Starcoder2-Instruct, 

while code produced by Gemini Pro was always harder to 

detect. This may be due to Gemini Pro's more human-like code 

production patterns, which may dilute the distinction between 

real and synthetic writing. Alternatively, the existing 

embeddings and features within our models might not be 

attuned to the fine-grained stylistic differences between Gemini 

Pro's output. With LLMs becoming stronger and generating 

increasingly realistic code, more sophisticated and interpretable 

detection methods will be necessary to ensure the integrity of 

programming exams and plagiarism detection. 

Lastly, our ablation study (Section IV-E) indicated that 

excluding comments from code modestly reduced model 

performance but that the effect was statistically insignificant. 

This implies that comments provide minimal but non-essential 

contextual hints in identifying human versus AI-written code. 

In general, the results emphasize that although fine-tuned 

models and code embeddings are a significant milestone in AI-

generated code detection in plagiarism prevention, the problem 

of generalizability across languages and models is yet to be 

solved. Future work needs to concentrate on strong, versatile, 

and explainable detection systems that can adapt together with 

fast-evolving code-generation technologies. 

 

Threats To Validity 

We have adopted every possible precaution to avoid potential 

threats that could compromise the validity of our research on 

identifying AI-generated code versus human-created code for 

plagiarism detection. The subsequent subsections summarize 

the primary concerns on validity and our mitigating measures. 

 

Construct Validity 

One possible threat is the design of the prompt utilized in 

generating AI-based samples of code. The quality and variety 

of the output code can be controlled by the way prompts are 

constructed. In order to limit this problem, we adhered to 

standard prompt engineering best practices and made sure that 

every prompt clearly declared the programming task, 

programming language, and environment. But we didn't use 

sophisticated prompting strategies like Chain-of-Thought or 

few-shot learning, which might have generated more high-

quality and human-like code. This is a limitation that could 

impact the representativeness of our AI-generated samples and, 

as a result, the detection performance. 

 

Another issue is the bias in the dataset. Because the datasets 

involved in this study were obtained from public repositories 

like LeetCode and GitHub, there is a risk that some models 

(e.g., ChatGPT, Gemini Pro, or Starcoder2-Instruct) could have 

been pre-trained on somewhat similar data. Although large 

language models (LLMs) produce code probabilistically and do 

not directly retrieve it, similarities between training sets and 

test sets may subtly affect the uniqueness of human-written 

code compared to AI-generated code. This might result in a 

situation where human-written code feels more familiar to the 

LLM, which would have implications for ensuring the fairness 

of the comparison. While this bias cannot be entirely avoided, 

it is being partially alleviated by employing varying datasets 

and several LLMs from various organizations (OpenAI, 

Google, Hugging Face).  

 

Internal Validity 

LLMs are non-deterministic by design—i.e., they might 

produce dissimilar outputs for the same input, especially under 

higher temperature settings (e.g., 1.0). This could influence the 

reproducibility of certain findings. To alleviate this, we 

regulated temperature settings throughout experiments and 

replicated generations where necessary so that our datasets 

remained consistent. 

Further, smaller errors in implementing the baseline plagiarism 

detection models (e.g., GPTZero, GPT-2 Output Detector, and 

GPTSniffer) might affect performance outcomes. To minimize 

this threat, we utilized official implementations or public APIs 

made available by the respective authors and checked outputs 

for correctness. 
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External Validity 

The external validity of our results could be restricted to the 

applied datasets, programming languages, and LLMs. But our 

datasets encompass a wide range of problem statements and 

coding areas, and the chosen LLMs—ChatGPT, Gemini Pro, 

and Starcoder2-Instruct—are three prominent AI code 

generators most commonly used by students and developers. 

Our experiments also encompass different programming 

languages (e.g., Python, Java, and C++) to raise the 

generalizability of our findings. 

 

Even with these efforts, we recognize that future LLMs will 

likely have better naturalness or novel code-generation 

patterns. As such, future work must reproduce and build upon 

our results using more recent models and learning datasets to 

maintain reliability of AI-powered plagiarism detection 

systems. 

 

 
 

 

 

 

 

III. CONCLUSION 

 
Our research delved into the essential challenge of identifying 

AI-generate code versus human-authored code to facilitate 

effective plagiarism prevention in academic and professional 

coding environments. Our results showed that current AI-

generated content (AIGC) detectors are ineffective in 

classifying AI-generated source code accurately, stressing their 

lack of reliability for use in code plagiarism detection systems. 

To fill this gap, we proposed and tested three differing detection 

methods: 

LLM-based Detection, 

Machine Learning based on Static Code Metrics, and 

Machine Learning based on Code Embeddings. 

Intensive experimentation was carried out on various datasets, 

programming languages, and big language models (LLMs) like 

ChatGPT, Gemini Pro, and Starcoder2-Instruct. Of all the 

methods, the Machine Learning model trained on code 

embeddings attained the maximum mean Average  

 

F1-score of 82.55 under the "Within" evaluation condition, 

showing high capability for detecting AI-generated code with 

high precision and consistency. 

In addition, an ablation study was conducted to examine the 

impact of different source code features on detection 

performance. The findings indicated that some structural and 

contextual features—like code comments—have a minor 

influence on model accuracy but not in drastically changing 

overall results. 

 

Lastly, this study provides a firm groundwork for AI-aided 

plagiarism detection by providing feasible methods to 

distinguish AI-authored from human-written code. 

Nevertheless, our research further underscores the importance 

of continuing studies toward better model generalizability on 

various programming languages, datasets, and newly evolving 

LLMs. Securing these detection mechanisms will be imperative 

in upholding academic honesty and guaranteeing responsible 

usage of generative AI in software design and education. 
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