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Abstract - Artificial Intelligence (AI) methods, specifically Large Language Models (LLMs), are increasingly being employed by
developers and students to produce source code. Though helpful, such AI-produced code is problematic in terms of plagiarism,
originality, and academic honesty. Hence, differentiating between code written by humans and code generated by AI has become
vital for the prevention of plagiarism. This article provides an empirical evaluation of current Al detection tools to determine
how well they can detect Al-generated code in educational and coding environments. The findings indicate that most of the tools
are ineffective and not generalizable enough to be useful for detecting plagiarism. In order to deal with this problem, we suggest
a number of solutions, such as fine-tuning LL.Ms and machine learning-based classification based on static code metrics and code
embeddings obtained from Abstract Syntax Trees (AST). Our top-performing model outperforms current detectors (e.g.,
GPTSniffer) and gets an F1 score of 82.55. In addition to that, we carry out an ablation study to study the contribution of different

source code features to detection accuracy.

Index Terms - Plagiarism Prevention, AI-Generated Code, Human-Written Code, Large Language Model, Code Detection.

INTRODUCTION

Artificial Intelligence (AI), especially machine learning
methods, has been extensively used in software development,
most notably for source code generation [31], [59], [77], [78].
Latest advancements include Large Language Models (LLMs),
which have been pre-trained on large, diverse datasets and
shown state-of-the-art results for code generation [25], [54],
[56], [60], [73], [86]. Generative LLMs like ChatGPT [1],
Gemini Pro [10], and Starcoder2 [58] can generate code that is
close to what a human programmer would produce based on a
natural language description. While earlier studies have
investigated different fine-tuning and prompting methods [57],
[71] for enhancing the quality of code generation, various
LLM-driven tools (e.g., GitHub Copilot [9]) have been
introduced to aid developers in creating software architecture,
generating production code or test cases, and refactoring
existing code. As such, the utilization of LLMs in source code
generation and programming support has become more
common.

Nonetheless, the rampant adoption of LLMs has evoked
pertinent concerns over plagiarism, academic honesty, and code
originality. Research has shown that the quality and accuracy
of Al-generated code may be influenced by prompt wording
[61], and about 35% of code snippets produced by GitHub
Copilot contain security vulnerabilities [20], [38]. In addition,
cases of intellectual property infringement, like duplication of
licensed code, have been reported [87]. Thus, precise

separation of human-written and Al-generated code is
necessary to prevent plagiarism. While automated Al-detection
tools (e.g., GPT Zero [6], Sapling [7]) are available, they are
mostly intended for detecting Al-generated natural language
and do not do well in source code [64], [66]. For this missing
link, Nguyen et al. [64] introduced GPT Sniffer by fine-tuning
Code BERT [36] to identify code as human-written or LLM-
generated. Yet, their method only took into account Java code
generated by ChatGPT, not the generalizability to other
programming languages and LLMs.

In our research, we perform a thorough empirical analysis of
current Al detection tools to test their effectiveness in
identifying Al-generated source code as a means of preventing
plagiarism. Our goals are twofold: first, we compare popular Al
content detectors on different programming languages, tasks,
and generative LLMs; second, we investigate the state-of-the-
art detector GPT Sniffer to understand its weaknesses and the
directions for improvement. We study the following questions
in detail:

RQ1: What is the effectiveness of existing Al detection tools at
detecting Al-generated source code for plagiarism detection?
RQ2: How can detection of Al-generated code be improved?
RQ3: How do source code features learned by embeddings
affect detection performance?

Our work makes the following contributions:

We show that current Al content detectors for text are
ineffective at detecting Al-generated source code in plagiarism
scenarios.
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We demonstrate that GPT Sniffer does not generalize well
across various programming languages, programming tasks,
and generative LLMs.

We propose machine learning and LLM-based classifiers that
perform better than other state-of-the-art methods and
demonstrate strong performance on various programming
languages, programming tasks, and LLMs.

The rest of this paper is structured as follows: Section II lays
out related work in Al-generated content detection and code
generation using LLMs. Section III outlines our data gathering,
model construction, and analysis process. Section IV shares
evaluation findings and insights. Section V addresses
implications of our findings. Section VI identifies potential
threats to validity, and Section VII concludes with a summary
of the most important results.

Related work and Background

A. Large Language Models for Code Generation
Improvements in Artificial Intelligence (AI) and Natural
Language Processing (NLP) have contributed to the emergence
of Large Language Models (LLMs) that can produce high-
quality code based on natural language descriptions [23].
Recently, models including CodeBERT [36], CodeT5 [84],
Starcoder2 [58], and ChatGPT [1] have been taught on
enormous datasets of both natural language and source code
[30] with remarkable performance in software-related tasks
[35], [40], [43]. These models are able to generate full
programs, debug programs, or create solutions from problem
statements, making them great resources for developers,
students, and educators [59]. Additionally, technologies such as
GitHub Copilot [9] have popularized Al-assisted coding, such
that developers can now create or complete code from
comments or descriptions themselves.

Still, with advancing LLMs, the line between human-authored
code and code generated by machines is thinning. Al-created
code may indeed replicate patterns of human coding, making it
hard to tell whether a student or programmer authored the code
independently. This calls for serious issues in academia,
particularly concerning plagiarism and originality in coding
assignments [56], [73], [86]. Here, we comprehensively
examined code generated by ChatGPT, Gemini Pro [10], GPT-
4 [4], and Starcoder2-Instruct (15B) [58], which are currently
state-of-the-art LLMs broadly utilized in educational and
professional settings [48], [51], [55], [69], [72], [73], [86]. This
choice provides us the opportunity to test not only the
detectability of AI code in general-purpose models (e.g.,
ChatGPT, GPT-4) but also in code-specific models (e.g.,
Starcoder2-Instruct).

Automated Detection of AI-Generated Code for Plagiarism
Prevention

The emergence of generative LLMs has boosted the need for
reliable techniques to identify Al-generated and human-
authored content, particularly for preventing plagiarism in
academic works. Some Al-generated content (AIGC) detectors,
including GPTZero [6] and Sapling [7], were created to detect
Al-written text with high accuracy in the detection of Al-
generated essays and documents. Open-source tools including
GPT-2 Detector [5], DetectGPT [63], and GLTR [79] have been
created to detect machine-generated text using token
probabilities and linguistic patterns.

However, these detectors primarily focus on natural language
text, not source code, which follows different syntactic and
structural rules [66]. As a result, their effectiveness in detecting
Al-generated code is limited [64], [66]. Nguyen et al. [64]
addressed this issue by proposing GPTSniffer, a detector based
on fine-tuned CodeBERT [36], to classify whether a code
snippet was written by an Al model or a human. While
GPTSniffer demonstrated encouraging results, its performance
was limited to ChatGPT-generated Java code and was not cross-
language generalizable. To fill this vacuum, our research
centre’s on testing several Al detectors on a variety of

programming languages—Python, C++, and Java—and
various LLMs, such as ChatGPT, GPT-4, Gemini Pro, and
Starcoder2-Instruct. To make our results robust and

generalizable, we used three established code generation
benchmarks: MBPP [21], HumanEval-X [90], and
CodeSearchNet [47].

Pre-trained Source Code Embeddings for Detection
Pre-trained code embeddings, which map code to structured
numerical representations, have been shown to be effective for
a range of Software Engineering (SE) tasks including
vulnerability detection [45], [70], program repair [27], [82],
[85], and code clone detection [24]. The embeddings encode
both the syntactic and semantic properties of source code so
that machine learning models learn code logic better [33], [89].
Recent work has improved these embeddings by incorporating
structural information from Abstract Syntax Trees (ASTs) in
addition to text data, enhancing their representation of
programming patterns. For example, Zhang et al. [89]
suggested breaking down large ASTs into smaller ASTs per
Instruction and encoding them with Recurrent Neural Networks
(RNNSs) to better preserve code semantics. In the same manner,
ding et al. [33] combined text and structural representations in
order to develop more universal programming task-adaptable
embeddings.

Within plagiarism detection, these kinds of embeddings can
assist models in identifying slight nuances in differences
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between human-written and Al-generated code. Because Al-
generated code tends to follow predictable patterns or be
missing some stylistic flourishes that are found in human-
written code, embeddings are useful in helping to differentiate
between the two. We utilized in this research the CodeT5+
110M code embedding model [83], which has state-of-the-art
performance on code understanding and generation tasks. We
utilized the embeddings to represent source code and AST
structures and trained machine learning models that
differentiated human and Al-generated code with high
reliability and precision.

II. METHODOLOGY

The primary research question of this work is to assess the
effectiveness of current Al-generated code detection tools for
plagiarism prevention (RQ1). Another aim is to propose a
model which can effectively label a sample code snippet as
either human-written or Al-generated (RQ2). Lastly, we discuss
the impact of different code-level and structural features on the
performance of our top-performing detection model (RQ3).
The next subsections provide a detailed account of the adopted
methodology. Figure 1 demonstrates a diagram of the proposed
research framework.

Data Collection

To investigate the effectiveness of modern Al code detectors
and create a better classification method, we employed several
code benchmark datasets that include both human and
artificially generated programs, as recommended by previous
studies on Al code generation and plagiarism detection [51],
[55], [56], [69], [72], [73], [86]. We specifically chose three
well-known datasets — MBPP [21], HumanEval-X [90], and
CodeSearchNet [47].

The MBPP dataset comprises 974 Python programming
problems, each with solutions that have been written by
humans. The problems range from elementary mathematical
exercises to elementary functional programming exercises. The
HumanEval-X dataset has 820 samples made up of function
descriptions and related code in several programming
languages, such as Python, C++, Java, JavaScript, and Go. For
more comprehensive language coverage and plagiarism
detection evaluation, we also added CodeSearchNet,
containing approximately 2 million comment-human code
pairs from open-source GitHub projects.

For this work, we concentrated on three popular programming
languages — Python, Java, and C++ — for the sake of
experimental tractability and to achieve significant

generalizability across language classes [8], [14]. MBPP gives
Python code alone, whereas CodeSearchNet gives Java and
Python examples. To avoid duplication between sets of
datasets, we manually verified all problem statements and code
examples and again cross-checked them using the Nicad clone
detection tool [29] to ensure that there were no clones or
duplicates.

To produce the Al-generated equivalents of the human code, we
employed four popular Large Language Models (LLMs)
commonly used in code generation studies: ChatGPT [1],
Gemini Pro [10], GPT-4 [4], and StarCoder2-Instruct [58]. We
obtained source code from each model based on the respective
natural language input or comment of the chosen datasets.
Because of cost constraints and the expense of the OpenAl API
[11], rather than writing code for the whole CodeSearchNet
dataset (over 900k samples), we randomly chose 400 examples
each for Java and Python, ensuring a 95% confidence level with
a 5% margin of error for statistical accuracy.
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Besides, code produced by LLM is non-deterministic and
shows creative variations with an increase in temperature
parameter [40], [67]. To make our evaluation representative of
a broad variety of Al code and its plagiarism detection
capability, we created several code chunks for every
specification using the same LLM at varied temperatures. For
experiments with controlled conditions, we employed
temperature = 0 and the standard temperature of each model
(ChatGPT, GPT-4, Starcoder2-Instruct = 1; Gemini Pro = 0.9)
to produce code according to the dataset specs.
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Once produced, the Al-generated code was merged with the
human-generated code present in the original datasets, thus
doubling the size of the datasets. We excluded cases where
LLMs were not able to produce code and removed code
snippets with syntax errors, as they would disrupt the static
code feature extraction (Section III-E). The final Al-generated
code dataset statistics are presented in Table I and Table II,
establishing a comprehensive foundation for plagiarism
detection and Al code identification evaluation.
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Compared to AI Code Detection Tools

Some Al-generated content (AIGC) detectors have been
created to detect Al-generated natural language text. Like
previous research [66], our aim was to analyse the ability of
such tools to detect Al-generated source code and compare
them with our methods of plagiarism avoidance. We chose five
popular detectors: GPTZero [6], GPT-2 Output Detector [5],
DetectGPT [63], GLTR [79], and Sapling [7]. These detectors
were executed on human-coded code from our chosen datasets,
as well as on Al-coded code generated by our chosen LLMs at
various temperature settings.

Recently, Nguyen et al. [64] introduced GPTSniffer, a classifier
specifically designed to identify Al-generated code. It fine-
tunes CodeBERT [36] using human-written and ChatGPT-
generated code to classify a snippet as human-written or Al-
generated. In our study, GPTSniffer was included as a baseline
to systematically assess its performance on Al-generated code
across different LLMs, temperature settings, and programming
languages.

Evaluation Settings and Metrics

After prior research [64], we divided each data set into training
(80%), validation (10%), and testing (10%) sets. To avoid
overlap between data sets produced by distinct LLMs (e.g.,
HumanEval-C++-ChatGPT vs. HumanEval-C++-Gemini Pro),
we kept splits uniform. Every code snippet has a ground truth

label: Human or Al. The performance metric was computed by
comparing the predicted labels with these ground truths.

We employed Accuracy, True Positive Rate (TPR), True
Negative Rate (TNR), and F1-score. In the case here, Human is
the positive label, and Al is the negative label.

Accuracy = (TP + TN) /(TP + TN + FP + FN)

TPR (Recall) = TP/ (TP + FN)

TNR =TN /(TN + FP)

Fl-score is the harmonic mean of precision and recall:
Precision = TP/ (TP + FP).

For label asymmetry, we computed two F1 types: Human F1
(Human = positive) and AI F1 (Al = positive). The Average F1-
score = (Human F1 + AI F1) / 2, which shows a balanced
estimate of detection performance.

For every suggested methodology, we tested in two
environments:

Within-dataset test: Training and testing using the same dataset
split.

Across-dataset evaluation: Training on one dataset (e.g.,
MBPP) and testing on another (e.g., HumanEval-X) to evaluate
generalizability. Baseline detectors were executed on the
testing splits for comparison.

LLM-based Approaches

Following the success of LLMs in code tasks like defect
detection and clone detection [65], we used LLMs to identify
Al-generated code. We employed zero-shot learning, in-context
learning, and fine-tuning. ChatGPT (GPT-3.5 turbo) was
chosen based on its state-of-the-art performance on software
engineering tasks [35], [40], [43]; GPT-4 and Gemini Pro were
not employed because of the limited fine-tuning capabilities.
Three code representations were utilized: Code Only (textual),
AST Only [42], and Combined (text + AST). AST
representations were created using Tree-Sitter [15], walking the
tree from root and adding node names with left/right suffixes.
These AST-based models performed strongly in earlier code
understanding tasks [65].

Zero-shot learning: ChatGPT was asked to identify each
snippet as being human- or Al-written, following standard best
practices [2], [3].

In-context learning: Demonstration examples (two human-
authored, two generated by Al) were extracted from the training
set with BM-25 [88] sorted by similarity to the test snippet.
Fine-tuning: ChatGPT was fine-tuned on one of the three code
representations with the associated labels using the OpenAl
API. Zero-shot models were only tested in the within-dataset
setting, whereas in-context and fine-tuned models were tested
in both within and across settings.
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Machine Learning Classifiers with Static Code Features

Shallow machine learning models continue to perform well in
software engineering activities when fed with pertinent features
[17], [32]. We derived 30 static code features from the dataset
by using Scitools Understand [13] and Tree-Sitter [15], such as
cyclomatic complexity, line counts, operators, keywords, and
identifiers [18]. Features were filtered such that only common
features valid across Python, Java, and C++ were included.

To eliminate multicollinearity, Variance Inflation Factor (VIF)
analysis was conducted, retaining features with VIF <5, which
left 8 final features (Table III). Models experimented with are
Logistic Regression, KNN, MLP, SVM, Random Forest,
Decision Tree, Gradient Boost, and XGBoost, with
hyperparameters optimized using random grid search [49].

Machine Learning Classifiers with Code Embeddings

We also used code embeddings to more effectively extract
semantic information for Al vs human code classification. Pre-
trained CodeT5+ 110M embeddings [83] were applied to the
three code representations (Code Only, AST Only, Combined).
Embeddings were used as features for the same machine
learning classifiers described in Section III-E, and
hyperparameters were tuned using random grid search.

To further explore classification performance, cosine similarity
between embeddings of Al-written and human-written code
from the same specifications was calculated. This similarity
helped to explain differences in model performance,
particularly in the "Across" evaluation setting, where training
and testing datasets have different domains or languages.

TABLE I: Collected Source Code Features
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We chose the CodeT5+ 110M embedding model [83] because
it was the newest and best code embedding model at the time
of conducting our experiments. CodeT5+ embeddings were
used as features to train the diverse set of machine learning
classifiers. In order to represent various facets of source code,
we used three code representations: Code Only (textual
information), AST Only [42] (structural representation), and

combined, where the two representations were combined by the
special separator token, as in [42]. With this, we could analyse
which representation—structural, textual, or combined—is
best suited to differentiate Al-written code from human-written
code.

The same machine learning models and training steps outlined
in Section III-E, such as hyperparameter tuning using random
grid search, were utilized. Figure 2 is a summary of this
embedding-based classification strategy

Machine Learning Classifiers with
Embeddings
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In addition, in order to examine performance differences
between detection methods, we compared the similarity
between Al and human-generated code to gain insights into
classification results. We utilized semantic embeddings of code
that preserve its underlying meaning [19], [81], [84], offering a
strong foundation for differentiating between Al and human-
generated code. Namely, we calculated the cosine similarity
between embeddings of human-written and Al-generated code
for the same programming task in our collection and took
averages. The average cosine similarities thus calculated were
utilized to determine semantic proximity between various large
language models (LLMs). This was done individually for each
of the four LLMs included in our experiment.

Since inconsistencies in training and testing datasets can affect
detection performance, we went further to explore such
inconsistencies and see why performance is worse in cross-
dataset ("Across") evaluations as opposed to within-dataset
("Within") evaluations. We considered the AST Only
embeddings since models trained on AST Only embeddings
had best performance in the "Within" setting. In the "Within"
evaluation, we averaged AST Only embeddings for training and
testing splits of each dataset and then computed the cosine
similarity between them. In the "Across" evaluation, we
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averaged training and testing split embeddings from various
datasets and calculated their cosine similarity. For each LLM,
we evaluated 30 pairs of training-testing splits, and the cosine
similarity values averaged were compared across evaluation
conditions.

Ablation Study
As AST Only embeddings reported the top performance across
all methods (Section IV-D), we performed an ablation study to
measure how different source code attributes influence
detection accuracy. We picked features among the 30 code
features that could be modified without altering the logic of the
code: Comment Lines, Variable Names, and Method Names.
Blank Lines were not included since they have no impact on
AST structure.
We identified the following code variants, which maintain
functional correctness:
e Comment-free code
e Code with consistent variable names (preceded with 'var'
and numbered sequentially starting from varl)
e Code with consistent method names (preceded with 'func'
and numbered sequentially from func1)
We generated these variants by using Tree Sitter to parse the
AST and make changes in the respective nodes. Comment
nodes and block comment nodes were eliminated to produce
comment-free code. Function declaration/definition nodes
were modified to generate code with uniform method names,
leaving language-specific functions (e.g., main in Java/C++,
constructors in Python) wuntouched. Likewise, variable
declaration nodes were renamed for code with uniform variable
names. Figure 3 shows an example of code with uniform
variable names. AST structures specific to each language were
used to apply modifications accordingly.

For instance, we adapted AST nodes including identifier,
pattern list, assignment, and typed parameter for Python code,
local variable declaration and formal parameter nodes for Java,
and init declarator nodes for C++. The complete
implementation details are available in our replication package
[12]. Subsequent to generating these code variants, we
extracted AST embeddings from each variant. Next, we trained
machine learning classifiers on these AST Only embeddings for
every variant type. To check how these changes affect
classification performance, we performed Welch's t-test [76]
and computed the effect size (Cohen's D [75]) from the average
F1-scores of each variant against the baseline code.

Results

Here, we present results of our research on the basis of the
research questions established in Section I. For brevity reasons,
we present results for the default temperature values utilized at

code generation time. The extra results for temperature 0 are
included in the supplementary materials. We discuss the
findings both under "Within" and "Across" evaluation settings
for a complete understanding of the results.

A. RQIl: How well can current AIGC detectors detect Al-
authored code compared to human-authored code for
plagiarism detection?

To respond to RQI1, we analyzed the performance of some
current Al-generated content (AIGC) detectors on our test
datasets (described in Section III). We tested five widely used
detectors initially developed for Al-generated text—GPTZero,
GPT-2 Output Detector, DetectGPT, GLTR, and Sapling—and
one code-oriented detector, GPTSniffer, which we use as our
baseline for comparison.

Table IV (AVG F1 stands for Average F1-score) is a summary
of the performance of these detectors when tested against Al-
generated code generated by different LLMs (ChatGPT, GPT-
4, Gemini Pro, and Starcoder2-Instruct) at their default
temperature levels (1 for ChatGPT, GPT-4, and Starcoder2-
Instruct; 0.9 for Gemini Pro). The value of each metric was
averaged over all datasets generated with the same model in
order to give a balanced performance overview.

TABLE IV: Performance of Existing AIGC Detectors (Default Temperature)

Srvderd ettt Sican of Eveny

TR Cemad P TP
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Our evaluation showed that the output of these detectors did not
change much from temperature 0 to default values. As with
earlier findings in comparative studies, their precision was
largely less than 0.6, showing that they were not very reliable
at separating human-written code from Al-generated code. This
is due to the fact that the majority of AIGC detectors were
trained using natural language texts, rather than source code—
having dissimilar syntactic forms, semantic patterns, and
stylistic standards.

In addition, the performance of every detector differed based
on which LLM generated the code. DetectGPT, for instance,
commonly misidentified human and LLM-written code
(particularly from Gemini Pro and ChatGPT) as Al-written,
reflected in its high TNR but low TPR. In contrast, GPTZero
had a tendency to identify both human and Al-written samples
as human-written, with a bias in false negatives. Surprisingly,
code from Starcoder2-Instruct produced fairly higher F1-scores
in the majority of detectors, perhaps because it employs a more
organized and uniform style of code.
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In summary, the experiments prove that existing AIGC
detectors are quite ineffective in detecting Al-written source
code, thus making it difficult for plagiarism prevention in
educational and software development settings. In addition, the
Fl1-score averages from various LLMs varied little, implying
that neither the generative model's selection nor its temperature
level has an impact on detection. This underscores the urgency
of code-specific detection mechanisms with the ability to
comprehend programming syntax and logical order to detect
Al-written code versus code written by humans.

A. RQ1: How well can current Al-generated content (AIGC)
detectors identify Al-generated code from human-written code
for plagiarism detection?

In response to RQI, we tested several AIGC detectors—
GPTZero, GPT-2 Output Detector, DetectGPT, GLTR, Sapling,
and the source code—specific GPTSniffer—on the test datasets
outlined in Section III. The performance measures (Accuracy,
Precision, Recall, and F1-score) were averaged for all datasets
produced by the same model for uniformity.

Table IV shows the mean F1-scores for every detector under
default temperature values (1 for ChatGPT, GPT-4, and
Starcoder2-Instruct; 0.9 for Gemini Pro). The outcomes show
that all the text-based detectors are poor, recording Accuracy
values of less than 0.6, indicating their poor capacity to discern
between Al-written and human code. Their poor performance
is due to training on natural language data, which differs
considerably from the formal syntax and logical structures
characteristic of programming languages.

We also saw variability in each detector's detection based on
the LLM with which the code was generated. For example,
DetectGPT frequently misidentified human-written and LLM-
generated code as Al-written (high TNR, low TPR), while
GPTZero had a tendency to mark both as human-written.
Surprisingly, Starcoder2-Instruct produced code that was
relatively easier to identify, which gave relatively higher F1-
scores. In general, there was no reliable or consistent detection
performance shown by any of the detectors across datasets or
models.

These findings validate that current AIGC detectors fail to
identify Al-generated source code irrespective of the applied
LLM or temperature value. This indicates a major loophole in
plagiarism detection tools, which highlights the requirement for
domain-specific models specifically trained on code and not
natural language.

Observation 1: Current natural language—grounded AIGC
detectors are weak in differentiating between human-crafted
and Al-generated source code.

B. RQ2: Is fine-tuned large language model (LLM) capable of
improving Al-generated code detection for plagiarism
prevention?

To enhance detection performance, we have experimented with
LLM-based methods using ChatGPT in three modes: zero-shot
learning, in-context learning, and fine-tuning. The models were
trained on three code representations—Code Only, AST Only,
and Combined—as described in Section III-D. The results
obtained by taking the average over datasets are shown in
Tables VI and VII.

The fine-tuned ChatGPT performed better than zero-shot and
in-context models, with over 80% Accuracy and F1-score on
some datasets (e.g., ChatGPT- and GPT-4-generated code in the
"Within" setting). This shows that fine-tuning using code-
specific datasets greatly enhances Al code detection
performance. Fine-tuned models also performed better when
the LLMs produced code with higher temperature settings,
which are more likely to add more creative variations.

But in the "Across" evaluation environment—where models
were run on datasets from other domains or languages—
Accuracy fell to a mere 40-50%, reflecting weak
generalization. For example, a model fine-tuned on Python
code (MBPP dataset) had just 50% Accuracy when run on Java
code (CodeSearchNet dataset). This points to fine-tuned
ChatGPT models being very effective within known datasets
but not being able to generalize to programming languages and
domains.

When trained using AST Only, performance fell further
(Average Fl-score = 59) than Code Only (= 82), indicating
syntactic trees alone don't reflect enough semantic variations to
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enable correct detection. Using both combined (Code + AST)
didn't provide meaningful improvement and sometimes
decreased performance by 10% or more.

Surprisingly, Gemini Pro—coded code was the most challenging
to recognize, with the lowest F1-scores (about 60%), perhaps
because it mimics human layout and logic coherence.
Observation 2: GPTSniffer, even though fine-tuned for code, is
inconsistent across models and languages, with poor
generalizability.

Observation 3: Fine-tuned ChatGPT far surpasses zero-shot
and in-context learning but is not adequate by itself for
recognizing Al-coded code when using AST representation.

C. RQ2 (continued): Can handcrafted machine learning
classifiers enhance Al code detection with static code metrics?
We then tested machine learning classifiers like Random Forest
(RF) and Gradient Boosting (GB) with static code features
(e.g., line count, function length, and frequency of variables).
RF performed best at temperature 0, and GB produced the best
F1-score at default temperature. In similarity with LLM-based
results, performance was averaged over datasets.

These classifiers surpassed other AIGC detectors, with RF
reaching more than 80% F1-score in detecting ChatGPT code
at temperature 0. Accuracy plummeted to approximately 66%
in the case of Gemini Pro, once more showing model-
dependent performance. The models did slightly better on high-
temperature generations with higher stylistic variability.

In the "Across" evaluation scenario, mean Fl-scores fell to
approximately 50%, indicating poor generalizability across
datasets and languages.

Observation 4: Classifiers learned on static code features and
fine-tuned by machine learning can identify Al-generated code
better than current detectors but have different performances on
various LLMs and coding languages.

D. RQ2 (continued): Do embedding-based machine learning
models improve detection performance?

To further improve the accuracy of detection, we employed
code embeddings produced through CodeT5+ for the three
representations—Code Only, AST Only, and Combined. These
embeddings were utilized as machine learning input features
for models like SVM, MLP, and Logistic Regression (LR).
Among all the approaches, AST Only embedding-trained
models performed best, reporting Fl-scores of 81.44
(temperature 0) and 82.55 (default temperature). This indicates
that embedding-based representations nicely encode the fine-
grained structural and semantic variations between Al-coded
and human-coded code. The models also performed
significantly better than GPTSniffer and other AIGC detectors.
But performance varied across LLMs again. Accuracy was up
to almost 90% for ChatGPT-generated code but fell to 73% for
Gemini Pro. Cosine similarity analysis of human and Al-
generated code embeddings showed high semantic overlap—

particularly for Gemini Pro (77.58%), which accounts for its
hard-to-detect difficulty.

In "Across" settings, mean F1-scores fell to approximately 42—
45%, affirming that cross-language and cross-domain
generalization is still a problem. It was further discovered that
similarity in embedding between training and testing sets was
20% below in "Across" settings, pointing to dataset
dissimilarity as a primary reason for performance decline.
Observation 5: Machine learning models trained using AST-
based embeddings yield the overall best performance but retain
mixed effectiveness across all LLMs and poor generalization
across domains.

E. RQ3: How do individual source code features affect the
efficacy of Al-generated code detection? (Ablation Study)

To see which code features contribute the most to detection
performance, we performed an ablation study with our best
model—GB classifier learned on AST embeddings (default
temperature). We generated code variants by deleting
comments, renaming variables to their first word, and renaming
methods, and compared the impact they have on F1-score.

As indicated in Table IX, comment removal caused the most
significant performance reduction (—3.82 in Fl-score), yet
variable and method name uniformity did not make any impact.
A t-test established that the reduction was statistically not
significant (p = 0.4543, effect size = 0.2178), indicating that
even though comments add trivial context information, their
removal does not significantly affect detection accuracy.
Observation 6: Removing code comments slightly reduces
model performance, but the effect is statistically insignificant.

Discussion

Even though large language models like ChatGPT have shown
phenomenal performance on a broad spectrum of software
development tasks—ranging from code summarization,
improvement, and bug reproduction—theory suggests that their
zero-shot and in-context learning ability continues to be
restricted when it comes to identifying Al-generated code. With
mean F1-scores and Accuracy being approximately 40% across
datasets, these models are unable to consistently identify Al-
generated code versus human-written code when not fine-
tuned. This means that even the most sophisticated LLMs do
not possess the inbuilt capability to detect Al-generated source
code as plagiarism avoidance unless specially trained for this
task.

Conversely, our embedding-based and fine-tuned models
registered Accuracy and F1-scores of over 80%, far surpassing
current AIGC detectors like GPTZero, GLTR, and GPTSniffer.
These findings indicate code-specific fine-tuning and explicit
representations (e.g., AST embeddings) are essential to
enhancing detection performance. Nevertheless, whereas our
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approaches had strong performance within sets ("Within"
setting), their external generalization to new programming
languages and application domains ("Across" setting) was
poor, with performance falling below 50%.

This absence of cross-language generalization is similar to
issues observed in other software engineering tasks, including
defect prediction and code quality estimation, where models
learn on a single project but fail to generalize adequately across
others. Therefore, constructing generalizable, language-
agnostic plagiarism detection models is an open research
problem. Future research would need to investigate cross-
lingual embeddings, contrastive learning, or domain adaptation
in order to enhance robustness.

As for representations of code, none of the representations
consistently outperformed all other representations. Fine-tuned
versions of ChatGPT models performed best on Code-Only
representations, whereas machine learning models based on
AST-Only embeddings provided the highest Accuracy and F1-
scores overall. This indicates that structural (AST) and textual
(code tokens) information capture different aspects of Al-
generated code. An interesting avenue for future research is the
development of multi-modal models that integrate both
semantic and syntactic features of source code to boost
detection accuracy.

We also noticed that our models worked best in identifying
code produced by ChatGPT, GPT-4, and Starcoder2-Instruct,
while code produced by Gemini Pro was always harder to
detect. This may be due to Gemini Pro's more human-like code
production patterns, which may dilute the distinction between
real and synthetic writing. Alternatively, the existing
embeddings and features within our models might not be
attuned to the fine-grained stylistic differences between Gemini
Pro's output. With LLMs becoming stronger and generating
increasingly realistic code, more sophisticated and interpretable
detection methods will be necessary to ensure the integrity of
programming exams and plagiarism detection.

Lastly, our ablation study (Section IV-E) indicated that
excluding comments from code modestly reduced model
performance but that the effect was statistically insignificant.
This implies that comments provide minimal but non-essential
contextual hints in identifying human versus Al-written code.
In general, the results emphasize that although fine-tuned
models and code embeddings are a significant milestone in Al-
generated code detection in plagiarism prevention, the problem
of generalizability across languages and models is yet to be
solved. Future work needs to concentrate on strong, versatile,
and explainable detection systems that can adapt together with
fast-evolving code-generation technologies.

Threats To Validity

We have adopted every possible precaution to avoid potential
threats that could compromise the validity of our research on
identifying Al-generated code versus human-created code for
plagiarism detection. The subsequent subsections summarize
the primary concerns on validity and our mitigating measures.

Construct Validity

One possible threat is the design of the prompt utilized in
generating Al-based samples of code. The quality and variety
of the output code can be controlled by the way prompts are
constructed. In order to limit this problem, we adhered to
standard prompt engineering best practices and made sure that
every prompt clearly declared the programming task,
programming language, and environment. But we didn't use
sophisticated prompting strategies like Chain-of-Thought or
few-shot learning, which might have generated more high-
quality and human-like code. This is a limitation that could
impact the representativeness of our Al-generated samples and,
as a result, the detection performance.

Another issue is the bias in the dataset. Because the datasets
involved in this study were obtained from public repositories
like LeetCode and GitHub, there is a risk that some models
(e.g., ChatGPT, Gemini Pro, or Starcoder2-Instruct) could have
been pre-trained on somewhat similar data. Although large
language models (LLMs) produce code probabilistically and do
not directly retrieve it, similarities between training sets and
test sets may subtly affect the uniqueness of human-written
code compared to Al-generated code. This might result in a
situation where human-written code feels more familiar to the
LLM, which would have implications for ensuring the fairness
of the comparison. While this bias cannot be entirely avoided,
it is being partially alleviated by employing varying datasets
and several LLMs from various organizations (OpenAl,
Google, Hugging Face).

Internal Validity

LLMs are non-deterministic by design—i.e., they might
produce dissimilar outputs for the same input, especially under
higher temperature settings (e.g., 1.0). This could influence the
reproducibility of certain findings. To alleviate this, we
regulated temperature settings throughout experiments and
replicated generations where necessary so that our datasets
remained consistent.

Further, smaller errors in implementing the baseline plagiarism
detection models (e.g., GPTZero, GPT-2 Output Detector, and
GPTSniffer) might affect performance outcomes. To minimize
this threat, we utilized official implementations or public APIs
made available by the respective authors and checked outputs
for correctness.
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External Validity

The external validity of our results could be restricted to the
applied datasets, programming languages, and LLMs. But our
datasets encompass a wide range of problem statements and
coding areas, and the chosen LLMs—ChatGPT, Gemini Pro,
and Starcoder2-Instruct—are three prominent Al code
generators most commonly used by students and developers.
Our experiments also encompass different programming
languages (e.g., Python, Java, and C++) to raise the
generalizability of our findings.

Even with these efforts, we recognize that future LLMs will
likely have better naturalness or novel code-generation
patterns. As such, future work must reproduce and build upon
our results using more recent models and learning datasets to
maintain reliability of Al-powered plagiarism detection
systems.

TABLE VI: Oveall Performance Comparison - Within (Default Temperature)

nd Testing dataset - Within vs.

GPId

III. CONCLUSION

Our research delved into the essential challenge of identifying
Al-generate code versus human-authored code to facilitate
effective plagiarism prevention in academic and professional
coding environments. Our results showed that current Al-
generated content (AIGC) detectors are ineffective in
classifying Al-generated source code accurately, stressing their
lack of reliability for use in code plagiarism detection systems.
To fill this gap, we proposed and tested three differing detection
methods:

LLM-based Detection,

Machine Learning based on Static Code Metrics, and

Machine Learning based on Code Embeddings.

Intensive experimentation was carried out on various datasets,
programming languages, and big language models (LLMs) like
ChatGPT, Gemini Pro, and Starcoder2-Instruct. Of all the
methods, the Machine Learning model trained on code
embeddings attained the maximum mean Average

Fl-score of 82.55 under the "Within" evaluation condition,
showing high capability for detecting Al-generated code with
high precision and consistency.

In addition, an ablation study was conducted to examine the
impact of different source code features on detection
performance. The findings indicated that some structural and
contextual features—like code comments—have a minor
influence on model accuracy but not in drastically changing
overall results.

Lastly, this study provides a firm groundwork for Al-aided
plagiarism detection by providing feasible methods to
distinguish ~ Al-authored from  human-written code.
Nevertheless, our research further underscores the importance
of continuing studies toward better model generalizability on
various programming languages, datasets, and newly evolving
LLMs. Securing these detection mechanisms will be imperative
in upholding academic honesty and guaranteeing responsible
usage of generative Al in software design and education.
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