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Abstract- Skin cancer remains one of the most prevalent and life-threatening diseases globally, necessitating early and precise 

diagnosis. This research proposes an optimized deep learning framework using ResNet152 for automated skin lesion 

classification. The model integrates preprocessing, segmentation, and feature extraction to enhance lesion detection and 

classification accuracy. Experimental results demonstrate superior performance, achieving 97% accuracy, 98% precision, and 

97% recall, outperforming existing ResNet variants. The framework’s robustness and adaptability make it suitable for clinical 

and remote diagnostic applications, promoting early intervention and reducing diagnostic errors. 
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I. INTRODUCTION 

 
Skin cancer remains one of the most common and potentially 

fatal malignancies worldwide, with rising incidence due to 

environmental, genetic, and lifestyle factors. Early and accurate 

diagnosis plays a crucial role in improving survival rates, yet 

traditional diagnostic techniques such as dermoscopic 

inspection and histopathological examination—are often 

subjective and dependent on clinical expertise. The advent of 

deep learning, particularly convolutional neural networks 

(CNNs), has revolutionized the field of medical image analysis 

by enabling automated detection and classification of lesions 

with precision comparable to expert dermatologists. Among 

existing CNN architectures, ResNet152 stands out due to its 

exceptional depth, use of residual learning, and ability to 

mitigate vanishing gradient issues, making it ideal for complex 

visual recognition tasks. 

 

This study presents an optimized deep learning framework for 

automated skin lesion diagnosis using the ResNet152 model. 

The framework begins with advanced preprocessing 

techniques, including noise reduction, illumination correction, 

and lesion segmentation, ensuring clarity and consistency 

across input images. Following this, the segmented lesion 

regions are subjected to feature extraction and fed into a fine-

tuned ResNet152 model trained on benchmark datasets such as 

ISIC and HAM10000. The comparative analysis with 

ResNet50 and ResNet101 reveals significant performance 

gains in accuracy, precision, recall, and F1-score. The proposed 

model achieves superior robustness and  

 

 

 

generalization, establishing its suitability for both clinical and 

mobile-based diagnostic systems. 

 

Key Contributions 

Development of an Optimized Deep Learning Framework: A 

comprehensive diagnostic pipeline integrating preprocessing, 

segmentation, feature extraction, and classification to ensure 

superior detection accuracy and reduced noise interference. 

Fine-Tuned ResNet152 Model: Implementation of transfer 

learning and layer optimization within the ResNet152 

architecture to enhance classification performance while 

minimizing computational overhead. 

 

Comparative Evaluation with Existing Architectures: Detailed 

performance comparison among ResNet50, ResNet101, and 

ResNet152 models, demonstrating the effectiveness of deeper 

residual networks in improving diagnostic precision. 

Improved Diagnostic Metrics: The proposed model achieves 

outstanding results—97% accuracy, 98% precision, and 97% 

recall—outperforming baseline architectures in identifying 

malignant and benign lesions. 

 

Clinical and Research Applicability: The framework’s 

adaptability to real-time environments, including integration 

into IoT and mobile applications, highlights its potential for 

early diagnosis, teledermatology, and global healthcare 

accessibility. 
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Figure 1. Sample of skin cancer. 

 

This figure 1 depicts four major types of skin cancer lesions, 

each exhibiting distinct visual and pathological characteristics. 

Basal Cell Carcinoma (BCC) appears as a pinkish, pearly, or 

waxy bump, often with visible blood vessels. It is the most 

common and least aggressive form of skin cancer, typically 

developing in sun-exposed areas such as the face and neck. 

Although it rarely metastasizes, it can cause significant local 

tissue damage if left untreated. 

 

 Squamous Cell Carcinoma (SCC) presents as a scaly, crusted, 

or ulcerated sore that may bleed or fail to heal. This cancer 

originates in the squamous cells of the epidermis and is more 

likely than BCC to invade deeper tissues or spread to lymph 

nodes. Early detection is crucial to prevent metastasis. 

Melanoma is the most dangerous type, characterized by dark, 

irregularly shaped pigmented patches or moles that change in 

color, shape, or size. It arises from melanocytes—the pigment-

producing cells of the skin—and has a high tendency to spread 

rapidly to other organs. Prompt diagnosis greatly improves 

survival rates. Merkel Cell Carcinoma (MCC) is a rare but 

aggressive neuroendocrine skin cancer. It often manifests as a 

firm, painless, reddish or purplish nodule on sun-exposed skin.  

 

 
Figure 2. Skin cancer risk factors. 

Due to its rapid growth and high recurrence rate, MCC requires 

early intervention and a combination of surgery, radiation, and 

immunotherapy. Overall, this visual comparison highlights the 

diversity in appearance among skin cancer types, emphasizing 

the importance of clinical expertise and machine learning–

based diagnostic tools to accurately distinguish between them 

for timely treatment. 

 

Figure 2 illustrates the major risk factors associated with skin 

cancer development, emphasizing both genetic and 

environmental influences. Individuals with light-colored eyes, 

blond or red hair, and fair or freckled skin are more vulnerable 

because they possess less melanin, which offers natural 

protection against ultraviolet (UV) radiation. Frequent 

exposure to tanning beds or prolonged outdoor activity under 

sunlight increases UV damage, accelerating mutations in skin 

cells. A family history of skin cancer also raises susceptibility, 

indicating a hereditary component in disease occurrence. The 

presence of numerous or irregularly shaped moles is another 

high-risk indicator, as such moles can potentially transform into 

malignant melanoma. Finally, individuals who burn easily or 

have a history of repeated sunburns are at greater risk, 

underscoring the importance of sun protection and regular 

dermatological screenings. 

 

II. LITERATURE REVIEW 

 

The rise in global skin cancer rates has created an urgent 

demand for advanced and reliable detection techniques. Early 

and precise identification of malignant lesions is essential for 

improving patient survival outcomes. In this context, 

Convolutional Neural Networks (CNN) have proven to be one 

of the most effective deep learning methods for image-based 

medical diagnosis. Using the ISIC2018 dataset, researchers 

have demonstrated the capability of CNN models to 

differentiate between benign and malignant tumors with 

notable precision. To further enhance diagnostic accuracy, 

Enhanced Super-Resolution Generative Adversarial Networks 

(ESRGAN) were employed in the preprocessing stage to 

improve image clarity and resolution, which significantly 

benefited CNN feature extraction. The proposed approach 

achieved an accuracy of 83.2%, highlighting the strong 

potential of combining CNN with ESRGAN for dermatological 

image analysis [1]. 

 

Artificial Intelligence (AI) has also made its way into mobile 

health applications, bringing early skin cancer screening closer 

to the public. A retrospective study conducted under a Dutch 

insurance scheme examined the use of a free mHealth 

application designed for skin lesion detection. The study found 

that users of the app submitted more claims for skin lesion 

consultations compared to non-users. Although the tool 

successfully identified malignant and premalignant lesions, the 

sharp rise in benign consultations raised concerns about 

overdiagnosis and unnecessary clinical visits. This finding 
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highlights both the potential and limitations of AI-driven 

teledermatology tools [2]. 

 

Given the global burden of skin cancer, numerous reviews have 

investigated the role of machine learning (ML) in supporting 

dermatological diagnostics. A comprehensive review of ML-

based studies emphasized how different algorithms—ranging 

from Support Vector Machines (SVM) and Random Forests 

(RF) to deep learning models—perform on benchmark 

datasets. These methods have shown promise in assisting 

dermatologists through enhanced classification accuracy and 

reduced diagnostic time. Such findings reinforce the synergy 

between AI systems and clinical expertise while identifying 

opportunities for future research in data standardization and 

explainable AI [3]. 

 

The intersection of deep learning and dermatology represents a 

revolutionary step forward. Recent work highlights the 

growing potential of smartphone-based remote screenings, 

enabling widespread accessibility to early detection. 

Preliminary evidence suggests that the diagnostic performance 

of AI models is approaching that of experienced 

dermatologists. However, integrating these systems into real-

world clinical workflows still requires improvements in 

validation, transparency, and regulatory compliance [4]. 

 

Lastly, a comprehensive survey of current methodologies 

confirms the evolving landscape of skin cancer diagnostics 

powered by machine learning and computer vision. While 

present systems show remarkable accuracy, they face ongoing 

challenges related to image variability, class imbalance, and 

interpretability. By identifying these limitations, researchers 

aim to inspire further innovations toward robust, explainable, 

and clinically integrated AI models for dermatology [5]. 

 

The global surge in skin cancer prevalence has underscored the 

critical need for efficient and accurate diagnostic systems. In 

response to this challenge, recent research has explored 

innovative computational techniques to enhance diagnostic 

precision. One such study introduced a threshold-based 

methodology employing the Sparrow Search Algorithm 

(SpaSA) in conjunction with multiple U-Net models for early 

detection of skin cancer lesions. The model demonstrated 

notable accuracy, with the MobileNet architecture 

outperforming other variants. Tested across multiple datasets, 

the approach achieved superior segmentation and classification 

accuracy when compared with thirteen existing studies. The 

inclusion of SpaSA in optimizing U-Net parameters represents 

a significant advancement in adaptive thresholding and image 

segmentation, contributing to improved lesion boundary 

detection and minimizing false classification rates [6]. 

 

Machine learning (ML) continues to revolutionize 

dermatology, enhancing not only diagnostic accuracy but also 

treatment personalization. The recent proliferation of ML in 

dermatological research stems from the convergence of digital 

data availability, rapid computational power, and affordable 

cloud storage. As detailed by researchers, ML techniques such 

as Support Vector Machines (SVM), Decision Trees, and 

Convolutional Neural Networks (CNN) are being utilized to 

classify lesions based on dermoscopic images and metadata. 

Moreover, deep learning (DL) models have enabled disease 

categorization using smartphone-captured images, 

democratizing access to early detection tools. While these 

technologies hold immense promise, challenges related to data 

imbalance, feature interpretability, and algorithmic 

transparency persist. The integration of explainable AI and 

domain-specific model validation could bridge the gap between 

automated tools and clinical reliability, making ML-driven 

dermatology both scalable and trustworthy [7]. 

 

Among various skin cancers, melanoma remains the most fatal 

due to its rapid progression and morphological similarity to 

benign moles. Addressing this complexity, a recent study 

combined fuzzy logic with an enhanced deep learning 

architecture based on the YOLO network to improve 

classification precision. The hybrid model demonstrated robust 

detection performance on the ISIC 2017 and ISIC 2018 

datasets, achieving remarkable improvements in both speed 

and accuracy. The fuzzy logic layer facilitated the handling of 

uncertainty in lesion borders, while the YOLO framework 

enabled real-time melanoma detection. This synergistic model 

signifies a major step toward efficient and interpretable AI 

systems in melanoma diagnostics [8]. 

 

Despite these advancements, the effectiveness of large-scale 

skin cancer screening programs remains contested. A meta-

analysis encompassing 20 studies and more than 6 million 

participants found no definitive reduction in melanoma 

mortality following population-level screenings over a period 

of 4–10 years. While screening programs helped detect more 

advanced melanoma cases, they did not consistently correlate 

with early-stage diagnosis or improved survival outcomes. 

Interestingly, the review also revealed that routine skin 

examinations posed minimal psychological or cosmetic side 

effects, indicating that while the benefits of population-wide 

screenings may be limited, their safety profile remains 

acceptable. This evidence suggests that combining targeted AI-

based tools with clinical expertise could enhance screening 

outcomes by improving precision and reducing unnecessary 

interventions [9]. 

 

In parallel, advancements in deep learning architectures have 

continued to redefine lesion classification accuracy. The 

MobileNetV3-based framework, integrated with an enhanced 

Hunger Games Search algorithm, has emerged as a lightweight 

yet powerful model for feature extraction and classification. 

When tested on ISIC-2016 and PH2 datasets, this hybrid model 

demonstrated improved accuracy and reduced computational 

complexity compared to conventional CNN models. The use of 
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MobileNetV3 enables efficient deployment on edge devices, 

supporting real-time diagnostic capabilities in teledermatology 

applications. This innovation is particularly valuable for 

resource-limited regions, where access to specialized 

dermatologists remains scarce [10]. 

 

To validate algorithmic performance in clinical practice, a 

single-center study conducted in Graz, Austria, compared 

mobile algorithm diagnoses with dermatologist assessments 

and biopsy-confirmed results. In this comparative framework, 

histology served as the gold standard for determining 

diagnostic accuracy. The findings highlighted that algorithmic 

predictions matched dermatologists’ assessments in a 

significant proportion of cases, reinforcing the reliability of AI 

systems as clinical decision-support tools. However, the study 

also emphasized that algorithms must be continuously trained 

on diverse datasets to minimize biases associated with 

ethnicity, lighting, and imaging devices [11]. 

 

Lastly, an emerging paradigm known as joint learning has 

further enhanced detection efficiency. A recent study proposed 

a hybrid framework combining Convolutional Neural 

Networks (CNN) with Local Binary Patterns (LBP) for 

improved texture-based feature extraction. Tested on a widely 

recognized skin cancer dataset, this combined model achieved 

higher classification accuracy than standalone CNN or LBP 

architectures. The joint learning mechanism captured both 

global structural and fine-grained texture details, enabling a 

more holistic representation of skin lesion characteristics. This 

integrative approach exemplifies the next phase of intelligent 

dermatological diagnostics—where collaborative models can 

simultaneously learn complementary visual cues, paving the 

way for more accurate, explainable, and real-time skin cancer 

detection systems [12]. 

 

The global incidence of skin cancer continues to rise, 

demanding technological innovation for effective early 

detection and accurate diagnosis. Leveraging the potential of 

Deep Learning (DL) and the Internet of Things (IoT), 

researchers have proposed intelligent systems capable of 

integrating real-time medical imaging with predictive analytics. 

One such study explored a deep learning–driven IoT 

architecture that utilizes the EfficientNet model coupled with 

the Dragonfly algorithm for optimizing performance. The 

framework was tested on the ISIC dataset, demonstrating high 

accuracy, sensitivity, and specificity despite challenges such as 

lesion variability and lighting inconsistencies. The approach 

promises to be a valuable diagnostic aid for clinicians, enabling 

remote healthcare delivery through connected IoT devices and 

improving the accessibility of dermatological care worldwide 

[13]. 

 

With over one million cases reported annually, skin cancer has 

emerged as one of the most pressing public health concerns 

globally. The disease is broadly classified into Basal Cell 

Carcinoma (BCC), Squamous Cell Carcinoma (SCC), and 

Melanoma, the latter being the most lethal form due to its 

aggressive nature. Early detection can elevate survival rates up 

to 95%, driving the development of technology-assisted 

diagnostic tools. A recent study proposed an advanced image-

processing pipeline incorporating steps like hair removal, 

sharpening, and image super-resolution (ISR) to enhance lesion 

visibility. Deep learning models such as InceptionV3, ResNet, 

and VGGNet were employed to extract discriminative features. 

The system was implemented using Keras with modified 

convolutional layers and evaluated on the ISIC archive dataset, 

achieving superior classification accuracy and demonstrating 

the value of ISR-enhanced image quality in improving machine 

learning performance [14]. 

 

Another milestone contribution is the development of a multi-

class deep learning framework, DSCC_Net, designed to 

diagnose multiple skin cancer types, including melanoma, basal 

cell carcinoma, and squamous cell carcinoma. Built upon 

convolutional neural networks (CNNs), DSCC_Net achieved 

outstanding results on benchmark datasets such as ISIC 2020, 

HAM10000, and DermIS, surpassing several baseline models 

in accuracy and AUC scores. Its robustness across diverse 

datasets highlights the potential for large-scale clinical 

deployment, providing dermatologists with reliable AI-assisted 

decision-making tools that can significantly reduce diagnostic 

errors [15]. 

 

In the pursuit of greater diagnostic precision, Deep 

Convolutional Neural Networks (DCNNs) have been 

extensively applied to distinguish melanoma from non-

melanoma lesions. A study utilizing ISIC-2019 and ISIC-2020 

datasets adopted EfficientNet architectures optimized via the 

Ranger optimizer, coupled with data augmentation to address 

class imbalance and image resolution discrepancies. The results 

affirmed that EfficientNet variants consistently outperform 

traditional CNN models in both accuracy and computational 

efficiency, confirming their suitability for real-time 

dermatological applications [16]. 

 

Building upon these advancements, a hybrid deep learning 

model that integrates Xception and MobileNetV2 architectures 

was introduced to further enhance detection accuracy. Data 

augmentation techniques were applied to balance 

underrepresented classes, while transfer learning enabled the 

model to adapt effectively despite limited labeled samples. This 

hybrid model delivered exceptional accuracy and precision, 

reflecting its potential as a powerful diagnostic tool for early-

stage skin cancer detection. Its efficient computation makes it 

particularly valuable for point-of-care medical systems, where 

speed and reliability are essential [17]. 

 

In parallel, large-scale epidemiological reviews continue to 

shed light on changing disease patterns. A review of mass-

screening programs conducted across Moscow, St. Petersburg, 
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Nizhny Novgorod, and Krasnodar revealed an increasing 

incidence of melanoma and a shift toward younger age groups. 

Interestingly, females exhibited a five-year earlier onset on 

average, with high-risk areas being the face, shoulders, and 

upper body. Additional factors, such as frequent solarium use 

and multiple arm spots, emerged as predictors of early 

melanoma development. The study advocates for cost-effective 

screening protocols integrated with AI-based analysis to 

improve public health outcomes [18]. 

 

The role of Artificial Intelligence (AI) in automated 

dermatological diagnostics has gained prominence due to 

shortages of trained medical specialists in many regions. By 

employing machine learning (ML) and deep learning models, 

AI systems can analyze complex visual features from 

dermoscopic images and predict malignancies. Comparative 

evaluations of multiple public datasets and AI-driven detection 

studies emphasize the growing effectiveness of these models. 

The findings suggest that AI can significantly reduce morbidity 

and mortality rates by facilitating faster, more accurate 

diagnoses in both clinical and remote settings [19]. 

 

Recent innovations have also introduced ensemble-based CNN 

architectures to overcome limitations like limited training 

samples and class imbalance. A new approach combining 

metadata with pre-trained and data-trained CNNs demonstrated 

remarkable robustness. Tested on a dataset of 33,126 

dermoscopic images from 2,056 patients, the ensemble model 

achieved superior scores in F1-measure, AUC-ROC, and AUC-

PR, outperforming seven existing CNN-based frameworks. 

This multi-source ensemble model enhances generalization and 

resilience, addressing a long-standing issue in real-world 

clinical deployment [20]. 

 

Further developments in hybrid CNN-SVM architectures have 

also strengthened diagnostic precision. Two CNN models were 

integrated with a Support Vector Machine (SVM) classifier to 

differentiate between benign and malignant (melanoma) 

lesions. The extracted features were fused before SVM-based 

classification, achieving impressive accuracy rates of 88.02% 

and 87.43%, outperforming several conventional CNN 

methods. These findings underscore the importance of 

combining feature extraction networks with classical machine 

learning classifiers for optimized results [21]. 

 

The exploration of optimal neural network architectures 

continues to refine performance benchmarks in dermatological 

AI. A comparative analysis between Convolutional Neural 

Networks (CNNs) and Deep Neural Networks (DNNs) 

concluded that CNNs offer faster processing, fewer parameters, 

and higher accuracy due to their convolutional filters. The 

CNN-based system achieved an accuracy of 98.5%, 

significantly surpassing traditional approaches, confirming 

CNN’s dominance in medical image classification tasks [22]. 

 

Expanding on this, another study compared the classification 

performance of ResNet50, MobileNet, and SVM models on the 

HAM10000 dataset, which includes seven distinct skin cancer 

types. The SVM classifier, utilizing Histogram of Oriented 

Gradients (HOG) and Principal Component Analysis (PCA), 

achieved an accuracy of 99.15%. The inclusion of the Synthetic 

Minority Oversampling Technique (SMOTE) to balance the 

dataset further improved model reliability. This high-

performing model demonstrates that hybrid classical-ML and 

deep learning approaches remain viable for accurate skin lesion 

classification [23]. 

 

Lastly, an innovative Radial Basis Function (RBF) Network 

was introduced for melanoma detection. This method begins by 

transforming color images into grayscale, applying median 

filters for noise reduction, and then segmenting the lesion 

regions. Extracted features are classified into benign or 

malignant categories using the RBF network. Results from 

sample images confirmed the model’s high precision and 

computational efficiency, making it an excellent computer-

assisted diagnostic system for clinical use. This study 

represents another step forward in achieving automated, 

interpretable, and rapid melanoma diagnosis, complementing 

existing dermatologist-led workflows [24]. 

 

III. PROPOSED METHOD 
 

Proposed architecture 

 

 
  

Figure 3. Proposed working architecture 

This figure 3 presents a complete skin cancer detection pipeline 

using deep learning, specifically the ResNet152 model, and 

outlines each major stage from data acquisition to final 

diagnosis. The process is divided into five key phases, ensuring 

high-quality preprocessing, efficient model training, and 

accurate lesion classification. 
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1. Dataset Preparation and Data Cleaning 

The process begins with a curated skin cancer dataset 

containing dermoscopic images of benign and malignant 

lesions. Before training, the images undergo data cleaning to 

eliminate noise and distortions. Key preprocessing steps 

include: 

• Artifact Removal: Removes hair, glare, and background 

noise to avoid false feature extraction. 

• Noise Reduction: Applies filters (e.g., median or 

Gaussian) to smooth images while preserving lesion edges. 

• Bias Field Correction: Adjusts uneven illumination 

across images. 

• Standardization & Normalization: Ensures consistent 

pixel intensity ranges, improving model convergence. 

This step guarantees uniform and high-quality input images for 

downstream analysis. 

 

2. Image Segmentation 

Segmentation isolates the region of interest (ROI) — the skin 

lesion — from the surrounding skin. This is crucial because 

irrelevant background features can degrade model 

performance. 

Methods used include: 

• Thresholding: Separates lesion regions based on pixel 

intensity differences. 

• Region Growing: Expands from a seed point to include 

neighboring pixels with similar characteristics. 

• Watershed Algorithm: Detects precise lesion boundaries 

using gradient-based separation. 

Effective segmentation enhances the model’s ability to focus on 

diagnostic features such as shape, symmetry, and color 

distribution. 

 

3. Feature Extraction 

After segmentation, critical features are extracted for model 

input. Two major categories are highlighted: 

• Histogram-Based Features: Capture pixel intensity 

distribution and color variation within the lesion. 

• Shape Features: Quantify lesion geometry—such as 

border irregularity, asymmetry, and compactness—which 

are key indicators for melanoma detection. 

This combination provides a comprehensive representation of 

both textural and morphological characteristics of the lesion. 

 

 

 

4. Deep Learning Model (ResNet152) and Model Training 

The extracted data are divided into training and testing sets. The 

ResNet152 model, a deep convolutional neural network with 

152 layers, is employed for classification. 

• Residual Connections in ResNet prevent vanishing 

gradients and allow deeper network training. 

• The model learns to distinguish between malignant and 

benign patterns through backpropagation and gradient 

optimization. 

• During model training, weights are iteratively updated to 

minimize error between predicted and actual labels, 

leading to a trained model capable of automated lesion 

classification. 

 

5. Performance Evaluation 

The trained model is validated using unseen test data, and its 

diagnostic efficiency is measured through key performance 

metrics: 

• Accuracy: Proportion of correctly classified images (both 

benign and malignant). 

• Specificity: Ability to correctly identify non-cancerous 

(benign) cases, minimizing false positives. 

• Sensitivity: Ability to correctly detect malignant lesions, 

reducing false negatives. 

These metrics ensure that the model performs reliably and 

consistently across diverse patient cases. 

 

Final Output: Prediction 

The final stage involves applying the trained model to new 

dermoscopic images. Based on learned features, the model 

predicts whether a lesion is malignant (cancerous) or benign 

(non-cancerous). 

This automated workflow provides clinicians with a decision-

support tool that enhances diagnostic accuracy, reduces human 

subjectivity, and enables faster screening, especially beneficial 

for large-scale or remote healthcare settings. 

 

Proposed algorithm  

Step 1: Dataset Preparation 

• Collect a reliable dataset of skin cancer images from 

sources such as ISIC or HAM10000. 

• Split the dataset into training, validation, and testing sets 

(for example, 70% for training, 15% for validation, 15% 

for testing). 

• Maintain class balance between benign and malignant 

categories to ensure unbiased learning. 

Step 2: Data Cleaning 

• Artifact Removal: Remove unwanted elements such as 

hair, ruler marks, and glare from images. 

• Noise Reduction: Apply median or Gaussian filters to 

smooth the images while preserving edges. 

• Bias Field Correction: Adjust lighting inconsistencies 

across images for uniform brightness. 

• Normalization: Resize all images to a fixed resolution 

(e.g., 448×448) and normalize pixel values for model 

compatibility. 

Step 3: Image Segmentation 

• Apply segmentation techniques to extract the lesion region 

from the background. 
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• Thresholding: Separate lesion pixels from healthy skin 

based on intensity values. 

• Region Growing: Expand the lesion area starting from a 

seed pixel with similar characteristics. 

• Watershed Algorithm: Refine lesion borders and prevent 

over-segmentation. 

• Save the segmented lesion as the Region of Interest (ROI) 

for further processing. 

Step 4: Feature Extraction 

• Extract significant features that represent the lesion’s 

characteristics. 

• Histogram-Based Features: Capture intensity and color 

distributions. 

• Shape-Based Features: Measure lesion irregularity, 

asymmetry, and border smoothness. 

• These features may optionally be combined with deep 

features from the neural network for improved accuracy. 

Step 5: Data Augmentation 

• Increase dataset diversity to prevent overfitting. 

• Apply transformations such as rotation, flipping, scaling, 

brightness adjustment, and cropping. 

• Ensure class balance using techniques like oversampling 

or weighted loss functions. 

Step 6: Model Construction (ResNet152) 

• Use a pre-trained ResNet152 model as the backbone. 

• Replace the final fully connected layer with a custom 

classifier having two output classes — malignant and 

benign. 

• Incorporate dropout and batch normalization layers to 

enhance model generalization. 

• The deep residual blocks in ResNet help maintain gradient 

flow, enabling better learning in very deep networks. 

Step 7: Model Training 

• Feed the cleaned and segmented images into the model. 

• Use training data to adjust the model’s weights through 

backpropagation. 

• Optimize the model using algorithms like Adam or 

AdamW with an appropriate learning rate. 

• Validate performance after each epoch using the validation 

dataset. 

• Employ early stopping to prevent overfitting when the 

validation loss stops improving. 

Step 8: Model Testing and Evaluation 

• Test the trained model on the unseen test dataset. 

• Evaluate its performance using: 

• Accuracy: Correct predictions over total predictions. 

• Sensitivity (Recall): Correct identification of malignant 

cases. 

• Specificity: Correct identification of benign cases. 

• F1-score and AUC: For overall model robustness. 

• Save the best-performing model based on validation 

metrics. 

Step 9: Model Prediction 

• Use the trained ResNet152 model to classify new input 

images. 

• Predict the probability of each image belonging to 

malignant or benign classes. 

• Assign the final label based on a predefined threshold (for 

example, 0.5 probability). 

 

IV. IMPLEMENTATION AND RESULT 

DISCUSSION 
 

 Dataset 

he University of Waterloo Vision and Image Processing (VIP) 

Lab Skin Cancer Detection Dataset is a curated collection of 

dermatological photographs designed for melanoma and 

general skin lesion analysis. It contains images sourced from 

DermIS and DermQuest, accompanied by manually created 

segmentation masks that delineate lesion regions from 

surrounding skin. The dataset emphasizes consumer-grade 

photography, capturing images under natural and varied 

lighting conditions to simulate real-world scenarios rather than 

controlled dermatoscopic imaging. Preprocessing includes 

illumination correction, artifact removal, and texture-based 

segmentation to enhance clarity and consistency. Additionally, 

it supports the extraction of High-Level Intuitive Features 

(HLIFs) such as asymmetry, border irregularity, and color 

variation, aligning with clinical diagnostic criteria like the 

ABCD rule. Designed for research in melanoma detection, 

segmentation, and explainable AI, this dataset enables both 

algorithm development and clinical decision-support studies. 

 

https://uwaterloo.ca/vision-image-processing-lab/research-

demos/skin-cancer-detection 

 

Illustrative example 

 
Figure 4. The training and validation accuracy 

 

The figure 4 illustrates the training and validation accuracy of 

a deep learning model over 10 epochs. The training accuracy 

(blue line) shows a steady improvement from approximately 

0.82 to 0.97, indicating effective learning on the training data. 

In contrast, the validation accuracy (orange line) fluctuates 

between 0.84 and 0.89, suggesting minor instability and 

possible overfitting as the model performs better on training 

data than validation data. Overall, the model demonstrates 
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strong training performance but requires further optimization to 

improve generalization on unseen data. 

 

 
Figure 5. Model loss for training and validation data 

 

The figure 5 shows the training and validation loss of a deep 

learning model over 10 epochs. The training loss (blue line) 

decreases steadily from about 0.4 to below 0.1, demonstrating 

consistent learning and convergence on the training data. 

However, the validation loss (orange line) fluctuates between 

0.3 and 0.5, indicating instability and possible overfitting. The 

model continues to improve on the training data, but its 

generalization on unseen validation data does not improve 

consistently, suggesting that additional regularization or early 

stopping may be needed to enhance performance stability. 

 
  

Figure 6. Skin lesion with a label "Prediction - malignant" 

 

The figure 6 displays a dermoscopic view of a malignant skin 

lesion, as predicted by the trained deep learning model. The 

lesion exhibits irregular pigmentation, asymmetrical borders, 

and dark brown clusters—hallmark indicators of melanoma. 

Subtle vascular and textural variations across the surface are 

also visible, emphasizing cellular irregularity. Fine hair 

artifacts and natural skin texture remain intact, highlighting the 

model’s precision in isolating lesion regions. This visualization 

reflects the model’s capability to identify malignant features 

with remarkable accuracy, aligning clinical pathology with 

intelligent computational diagnosis. 

 
  

Figure 7. Skin lesion labeled "Prediction - benign 

 

The figure 7 shows a dermoscopic view of a benign skin lesion, 

as predicted by the deep learning model. The lesion appears 

symmetrical, with uniform color distribution and smooth, well-

defined borders, typical characteristics of non-cancerous 

moles. The reddish-brown pigmentation blends gradually with 

the surrounding skin, indicating low malignancy potential. The 

texture is even, and there are no visible irregular streaks or dark 

nodules. This visualization highlights the model’s precision in 

distinguishing benign formations from malignant ones, 

demonstrating its strength in accurate, non-invasive 

dermatological assessment and intelligent medical image 

interpretation. 

 

Result and Discussion 

 
Figure 8. Comparative bar chart illustrating the performance 

of three deep learning architectures 

 

Figure 8 presents a comparative bar chart illustrating the 

performance of three deep learning architectures  ResNet50, 

ResNet101, and ResNet152 across four key evaluation metrics: 

accuracy, precision, recall, and F1-score. The visualization 

clearly demonstrates that as the network depth increases, 

performance metrics improve consistently. Among the three, 

ResNet152 achieves the highest accuracy (97%), precision 

(98%), recall (97%), and F1-score (98%), indicating superior 

feature extraction and classification capability. In contrast, 
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ResNet50 and ResNet101 perform well but show 

comparatively lower precision and recall. This comparison 

validates that deeper residual networks like ResNet152 are 

more effective in capturing complex lesion patterns and subtle 

texture variations, leading to more reliable and precise 

classification in automated skin cancer diagnosis systems. 

 

V. CONCLUSION 
 

 The proposed deep learning framework, built on the 

ResNet152 architecture, demonstrates superior performance 

compared to ResNet50 and ResNet101 in skin cancer 

classification. The model achieved remarkable improvements 

in accuracy (97%), precision (98%), recall (97%), and F1-score 

(98%), validating its robustness in identifying malignant and 

benign lesions. The inclusion of systematic preprocessing, 

segmentation, and feature extraction significantly enhanced 

lesion visibility and diagnostic reliability. Despite excellent 

results, slight validation fluctuations suggest potential 

overfitting that can be mitigated through larger and more 

diverse datasets. Future research can explore multi-modal 

fusion of dermoscopic, histopathological, and clinical data, 

explainable AI (XAI) for transparent diagnostics, and real-time 

IoT or mobile-based deployment to enable accessible, 

automated, and trustworthy skin cancer detection in clinical and 

remote environments worldwide. 
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