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Abstract- Skin cancer remains one of the most prevalent and life-threatening diseases globally, necessitating early and precise

diagnosis. This research proposes an optimized deep learning framework using ResNet152 for automated skin lesion

classification. The model integrates preprocessing, segmentation, and feature extraction to enhance lesion detection and

classification accuracy. Experimental results demonstrate superior performance, achieving 97% accuracy, 98% precision, and

97% recall, outperforming existing ResNet variants. The framework’s robustness and adaptability make it suitable for clinical

and remote diagnostic applications, promoting early intervention and reducing diagnostic errors.
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I. INTRODUCTION

Skin cancer remains one of the most common and potentially
fatal malignancies worldwide, with rising incidence due to
environmental, genetic, and lifestyle factors. Early and accurate
diagnosis plays a crucial role in improving survival rates, yet
traditional diagnostic techniques such as dermoscopic
inspection and histopathological examination—are often
subjective and dependent on clinical expertise. The advent of
deep learning, particularly convolutional neural networks
(CNNS), has revolutionized the field of medical image analysis
by enabling automated detection and classification of lesions
with precision comparable to expert dermatologists. Among
existing CNN architectures, ResNet152 stands out due to its
exceptional depth, use of residual learning, and ability to
mitigate vanishing gradient issues, making it ideal for complex
visual recognition tasks.

This study presents an optimized deep learning framework for
automated skin lesion diagnosis using the ResNet152 model.
The framework begins with advanced preprocessing
techniques, including noise reduction, illumination correction,
and lesion segmentation, ensuring clarity and consistency
across input images. Following this, the segmented lesion
regions are subjected to feature extraction and fed into a fine-
tuned ResNet152 model trained on benchmark datasets such as
ISIC and HAMI10000. The comparative analysis with
ResNet50 and ResNetl01 reveals significant performance
gains in accuracy, precision, recall, and F1-score. The proposed
model achieves superior robustness and

generalization, establishing its suitability for both clinical and
mobile-based diagnostic systems.

Key Contributions

Development of an Optimized Deep Learning Framework: A
comprehensive diagnostic pipeline integrating preprocessing,
segmentation, feature extraction, and classification to ensure
superior detection accuracy and reduced noise interference.
Fine-Tuned ResNet152 Model: Implementation of transfer
learning and layer optimization within the ResNetl52
architecture to enhance classification performance while
minimizing computational overhead.

Comparative Evaluation with Existing Architectures: Detailed
performance comparison among ResNet50, ResNet101, and
ResNet152 models, demonstrating the effectiveness of deeper
residual networks in improving diagnostic precision.
Improved Diagnostic Metrics: The proposed model achieves
outstanding results—97% accuracy, 98% precision, and 97%
recall—outperforming baseline architectures in identifying
malignant and benign lesions.

Clinical and Research Applicability: The framework’s
adaptability to real-time environments, including integration
into IoT and mobile applications, highlights its potential for
early diagnosis, teledermatology, and global healthcare
accessibility.
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This figure 1 depicts four major types of skin cancer lesions,
each exhibiting distinct visual and pathological characteristics.
Basal Cell Carcinoma (BCC) appears as a pinkish, pearly, or
waxy bump, often with visible blood vessels. It is the most
common and least aggressive form of skin cancer, typically
developing in sun-exposed areas such as the face and neck.
Although it rarely metastasizes, it can cause significant local
tissue damage if left untreated.

Squamous Cell Carcinoma (SCC) presents as a scaly, crusted,
or ulcerated sore that may bleed or fail to heal. This cancer
originates in the squamous cells of the epidermis and is more
likely than BCC to invade deeper tissues or spread to lymph
nodes. Early detection is crucial to prevent metastasis.
Melanoma is the most dangerous type, characterized by dark,
irregularly shaped pigmented patches or moles that change in
color, shape, or size. It arises from melanocytes—the pigment-
producing cells of the skin—and has a high tendency to spread
rapidly to other organs. Prompt diagnosis greatly improves
survival rates. Merkel Cell Carcinoma (MCC) is a rare but
aggressive neuroendocrine skin cancer. It often manifests as a
firm, painless, reddish or purplish nodule on sun-exposed skin.
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Figure 2. Skin cancer risk factors.

Due to its rapid growth and high recurrence rate, MCC requires
early intervention and a combination of surgery, radiation, and
immunotherapy. Overall, this visual comparison highlights the
diversity in appearance among skin cancer types, emphasizing
the importance of clinical expertise and machine learning—
based diagnostic tools to accurately distinguish between them
for timely treatment.

Figure 2 illustrates the major risk factors associated with skin
cancer development, emphasizing both genetic and
environmental influences. Individuals with light-colored eyes,
blond or red hair, and fair or freckled skin are more vulnerable
because they possess less melanin, which offers natural
protection against ultraviolet (UV) radiation. Frequent
exposure to tanning beds or prolonged outdoor activity under
sunlight increases UV damage, accelerating mutations in skin
cells. A family history of skin cancer also raises susceptibility,
indicating a hereditary component in disease occurrence. The
presence of numerous or irregularly shaped moles is another
high-risk indicator, as such moles can potentially transform into
malignant melanoma. Finally, individuals who burn easily or
have a history of repeated sunburns are at greater risk,
underscoring the importance of sun protection and regular
dermatological screenings.

II. LITERATURE REVIEW

The rise in global skin cancer rates has created an urgent
demand for advanced and reliable detection techniques. Early
and precise identification of malignant lesions is essential for
improving patient survival outcomes. In this context,
Convolutional Neural Networks (CNN) have proven to be one
of the most effective deep learning methods for image-based
medical diagnosis. Using the ISIC2018 dataset, researchers
have demonstrated the capability of CNN models to
differentiate between benign and malignant tumors with
notable precision. To further enhance diagnostic accuracy,
Enhanced Super-Resolution Generative Adversarial Networks
(ESRGAN) were employed in the preprocessing stage to
improve image clarity and resolution, which significantly
benefited CNN feature extraction. The proposed approach
achieved an accuracy of 83.2%, highlighting the strong
potential of combining CNN with ESRGAN for dermatological
image analysis [1].

Artificial Intelligence (AI) has also made its way into mobile
health applications, bringing early skin cancer screening closer
to the public. A retrospective study conducted under a Dutch
insurance scheme examined the use of a free mHealth
application designed for skin lesion detection. The study found
that users of the app submitted more claims for skin lesion
consultations compared to non-users. Although the tool
successfully identified malignant and premalignant lesions, the
sharp rise in benign consultations raised concerns about
overdiagnosis and unnecessary clinical visits. This finding
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highlights both the potential and limitations of Al-driven
teledermatology tools [2].

Given the global burden of skin cancer, numerous reviews have
investigated the role of machine learning (ML) in supporting
dermatological diagnostics. A comprehensive review of ML-
based studies emphasized how different algorithms—ranging
from Support Vector Machines (SVM) and Random Forests
(RF) to deep learning models—perform on benchmark
datasets. These methods have shown promise in assisting
dermatologists through enhanced classification accuracy and
reduced diagnostic time. Such findings reinforce the synergy
between Al systems and clinical expertise while identifying
opportunities for future research in data standardization and
explainable Al [3].

The intersection of deep learning and dermatology represents a
revolutionary step forward. Recent work highlights the
growing potential of smartphone-based remote screenings,
enabling widespread accessibility to early detection.
Preliminary evidence suggests that the diagnostic performance
of Al models is approaching that of experienced
dermatologists. However, integrating these systems into real-
world clinical workflows still requires improvements in
validation, transparency, and regulatory compliance [4].

Lastly, a comprehensive survey of current methodologies
confirms the evolving landscape of skin cancer diagnostics
powered by machine learning and computer vision. While
present systems show remarkable accuracy, they face ongoing
challenges related to image variability, class imbalance, and
interpretability. By identifying these limitations, researchers
aim to inspire further innovations toward robust, explainable,
and clinically integrated Al models for dermatology [5].

The global surge in skin cancer prevalence has underscored the
critical need for efficient and accurate diagnostic systems. In
response to this challenge, recent research has explored
innovative computational techniques to enhance diagnostic
precision. One such study introduced a threshold-based
methodology employing the Sparrow Search Algorithm
(SpaSA) in conjunction with multiple U-Net models for early
detection of skin cancer lesions. The model demonstrated
notable accuracy, with the MobileNet architecture
outperforming other variants. Tested across multiple datasets,
the approach achieved superior segmentation and classification
accuracy when compared with thirteen existing studies. The
inclusion of SpaSA in optimizing U-Net parameters represents
a significant advancement in adaptive thresholding and image
segmentation, contributing to improved lesion boundary
detection and minimizing false classification rates [6].

Machine learning (ML) continues to revolutionize
dermatology, enhancing not only diagnostic accuracy but also
treatment personalization. The recent proliferation of ML in

dermatological research stems from the convergence of digital
data availability, rapid computational power, and affordable
cloud storage. As detailed by researchers, ML techniques such
as Support Vector Machines (SVM), Decision Trees, and
Convolutional Neural Networks (CNN) are being utilized to
classify lesions based on dermoscopic images and metadata.
Moreover, deep learning (DL) models have enabled disease
categorization using smartphone-captured images,
democratizing access to early detection tools. While these
technologies hold immense promise, challenges related to data
imbalance, feature interpretability, and algorithmic
transparency persist. The integration of explainable Al and
domain-specific model validation could bridge the gap between
automated tools and clinical reliability, making ML-driven
dermatology both scalable and trustworthy [7].

Among various skin cancers, melanoma remains the most fatal
due to its rapid progression and morphological similarity to
benign moles. Addressing this complexity, a recent study
combined fuzzy logic with an enhanced deep learning
architecture based on the YOLO network to improve
classification precision. The hybrid model demonstrated robust
detection performance on the ISIC 2017 and ISIC 2018
datasets, achieving remarkable improvements in both speed
and accuracy. The fuzzy logic layer facilitated the handling of
uncertainty in lesion borders, while the YOLO framework
enabled real-time melanoma detection. This synergistic model
signifies a major step toward efficient and interpretable Al
systems in melanoma diagnostics [8].

Despite these advancements, the effectiveness of large-scale
skin cancer screening programs remains contested. A meta-
analysis encompassing 20 studies and more than 6 million
participants found no definitive reduction in melanoma
mortality following population-level screenings over a period
of 4-10 years. While screening programs helped detect more
advanced melanoma cases, they did not consistently correlate
with early-stage diagnosis or improved survival outcomes.
Interestingly, the review also revealed that routine skin
examinations posed minimal psychological or cosmetic side
effects, indicating that while the benefits of population-wide
screenings may be limited, their safety profile remains
acceptable. This evidence suggests that combining targeted Al-
based tools with clinical expertise could enhance screening
outcomes by improving precision and reducing unnecessary
interventions [9].

In parallel, advancements in deep learning architectures have
continued to redefine lesion classification accuracy. The
MobileNetV3-based framework, integrated with an enhanced
Hunger Games Search algorithm, has emerged as a lightweight
yet powerful model for feature extraction and classification.
When tested on ISIC-2016 and PH2 datasets, this hybrid model
demonstrated improved accuracy and reduced computational
complexity compared to conventional CNN models. The use of
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MobileNetV3 enables efficient deployment on edge devices,
supporting real-time diagnostic capabilities in teledermatology
applications. This innovation is particularly valuable for
resource-limited regions, where access to specialized
dermatologists remains scarce [10].

To validate algorithmic performance in clinical practice, a
single-center study conducted in Graz, Austria, compared
mobile algorithm diagnoses with dermatologist assessments
and biopsy-confirmed results. In this comparative framework,
histology served as the gold standard for determining
diagnostic accuracy. The findings highlighted that algorithmic
predictions matched dermatologists’ assessments in a
significant proportion of cases, reinforcing the reliability of Al
systems as clinical decision-support tools. However, the study
also emphasized that algorithms must be continuously trained
on diverse datasets to minimize biases associated with
ethnicity, lighting, and imaging devices [11].

Lastly, an emerging paradigm known as joint learning has
further enhanced detection efficiency. A recent study proposed
a hybrid framework combining Convolutional Neural
Networks (CNN) with Local Binary Patterns (LBP) for
improved texture-based feature extraction. Tested on a widely
recognized skin cancer dataset, this combined model achieved
higher classification accuracy than standalone CNN or LBP
architectures. The joint learning mechanism captured both
global structural and fine-grained texture details, enabling a
more holistic representation of skin lesion characteristics. This
integrative approach exemplifies the next phase of intelligent
dermatological diagnostics—where collaborative models can
simultaneously learn complementary visual cues, paving the
way for more accurate, explainable, and real-time skin cancer
detection systems [12].

The global incidence of skin cancer continues to rise,
demanding technological innovation for effective early
detection and accurate diagnosis. Leveraging the potential of
Deep Learning (DL) and the Internet of Things (IoT),
researchers have proposed intelligent systems capable of
integrating real-time medical imaging with predictive analytics.
One such study explored a deep learning—driven IoT
architecture that utilizes the EfficientNet model coupled with
the Dragonfly algorithm for optimizing performance. The
framework was tested on the ISIC dataset, demonstrating high
accuracy, sensitivity, and specificity despite challenges such as
lesion variability and lighting inconsistencies. The approach
promises to be a valuable diagnostic aid for clinicians, enabling
remote healthcare delivery through connected IoT devices and
improving the accessibility of dermatological care worldwide
[13].

With over one million cases reported annually, skin cancer has
emerged as one of the most pressing public health concerns
globally. The disease is broadly classified into Basal Cell

Carcinoma (BCC), Squamous Cell Carcinoma (SCC), and
Melanoma, the latter being the most lethal form due to its
aggressive nature. Early detection can elevate survival rates up
to 95%, driving the development of technology-assisted
diagnostic tools. A recent study proposed an advanced image-
processing pipeline incorporating steps like hair removal,
sharpening, and image super-resolution (ISR) to enhance lesion
visibility. Deep learning models such as InceptionV3, ResNet,
and VGGNet were employed to extract discriminative features.
The system was implemented using Keras with modified
convolutional layers and evaluated on the ISIC archive dataset,
achieving superior classification accuracy and demonstrating
the value of ISR-enhanced image quality in improving machine
learning performance [14].

Another milestone contribution is the development of a multi-
class deep learning framework, DSCC Net, designed to
diagnose multiple skin cancer types, including melanoma, basal
cell carcinoma, and squamous cell carcinoma. Built upon
convolutional neural networks (CNNs), DSCC_Net achieved
outstanding results on benchmark datasets such as ISIC 2020,
HAM10000, and DermlS, surpassing several baseline models
in accuracy and AUC scores. Its robustness across diverse
datasets highlights the potential for large-scale clinical
deployment, providing dermatologists with reliable Al-assisted
decision-making tools that can significantly reduce diagnostic
errors [15].

In the pursuit of greater diagnostic precision, Deep
Convolutional Neural Networks (DCNNs) have been
extensively applied to distinguish melanoma from non-
melanoma lesions. A study utilizing ISIC-2019 and ISIC-2020
datasets adopted EfficientNet architectures optimized via the
Ranger optimizer, coupled with data augmentation to address
class imbalance and image resolution discrepancies. The results
affirmed that EfficientNet variants consistently outperform
traditional CNN models in both accuracy and computational
efficiency, confirming their suitability for real-time
dermatological applications [16].

Building upon these advancements, a hybrid deep learning
model that integrates Xception and MobileNetV2 architectures
was introduced to further enhance detection accuracy. Data
augmentation techniques were applied to balance
underrepresented classes, while transfer learning enabled the
model to adapt effectively despite limited labeled samples. This
hybrid model delivered exceptional accuracy and precision,
reflecting its potential as a powerful diagnostic tool for early-
stage skin cancer detection. Its efficient computation makes it
particularly valuable for point-of-care medical systems, where
speed and reliability are essential [17].

In parallel, large-scale epidemiological reviews continue to
shed light on changing disease patterns. A review of mass-
screening programs conducted across Moscow, St. Petersburg,
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Nizhny Novgorod, and Krasnodar revealed an increasing
incidence of melanoma and a shift toward younger age groups.
Interestingly, females exhibited a five-year earlier onset on
average, with high-risk areas being the face, shoulders, and
upper body. Additional factors, such as frequent solarium use
and multiple arm spots, emerged as predictors of early
melanoma development. The study advocates for cost-effective
screening protocols integrated with Al-based analysis to
improve public health outcomes [18].

The role of Artificial Intelligence (AI) in automated
dermatological diagnostics has gained prominence due to
shortages of trained medical specialists in many regions. By
employing machine learning (ML) and deep learning models,
Al systems can analyze complex visual features from
dermoscopic images and predict malignancies. Comparative
evaluations of multiple public datasets and Al-driven detection
studies emphasize the growing effectiveness of these models.
The findings suggest that Al can significantly reduce morbidity
and mortality rates by facilitating faster, more accurate
diagnoses in both clinical and remote settings [19].

Recent innovations have also introduced ensemble-based CNN
architectures to overcome limitations like limited training
samples and class imbalance. A new approach combining
metadata with pre-trained and data-trained CNNs demonstrated
remarkable robustness. Tested on a dataset of 33,126
dermoscopic images from 2,056 patients, the ensemble model
achieved superior scores in F1-measure, AUC-ROC, and AUC-
PR, outperforming seven existing CNN-based frameworks.
This multi-source ensemble model enhances generalization and
resilience, addressing a long-standing issue in real-world
clinical deployment [20].

Further developments in hybrid CNN-SVM architectures have
also strengthened diagnostic precision. Two CNN models were
integrated with a Support Vector Machine (SVM) classifier to
differentiate between benign and malignant (melanoma)
lesions. The extracted features were fused before SVM-based
classification, achieving impressive accuracy rates of 88.02%
and 87.43%, outperforming several conventional CNN
methods. These findings underscore the importance of
combining feature extraction networks with classical machine
learning classifiers for optimized results [21].

The exploration of optimal neural network architectures
continues to refine performance benchmarks in dermatological
Al. A comparative analysis between Convolutional Neural
Networks (CNNs) and Deep Neural Networks (DNNs)
concluded that CNNs offer faster processing, fewer parameters,
and higher accuracy due to their convolutional filters. The
CNN-based system achieved an accuracy of 98.5%,
significantly surpassing traditional approaches, confirming
CNN’s dominance in medical image classification tasks [22].

Expanding on this, another study compared the classification
performance of ResNet50, MobileNet, and SVM models on the
HAMI10000 dataset, which includes seven distinct skin cancer
types. The SVM classifier, utilizing Histogram of Oriented
Gradients (HOG) and Principal Component Analysis (PCA),
achieved an accuracy of 99.15%. The inclusion of the Synthetic
Minority Oversampling Technique (SMOTE) to balance the
dataset further improved model reliability. This high-
performing model demonstrates that hybrid classical-ML and
deep learning approaches remain viable for accurate skin lesion
classification [23].

Lastly, an innovative Radial Basis Function (RBF) Network
was introduced for melanoma detection. This method begins by
transforming color images into grayscale, applying median
filters for noise reduction, and then segmenting the lesion
regions. Extracted features are classified into benign or
malignant categories using the RBF network. Results from
sample images confirmed the model’s high precision and
computational efficiency, making it an excellent computer-
assisted diagnostic system for clinical use. This study
represents another step forward in achieving automated,
interpretable, and rapid melanoma diagnosis, complementing
existing dermatologist-led workflows [24].

ITII. PROPOSED METHOD

Proposed architecture

1. Data Cleaning

Data Set 2. Segmentation 3. Feature extraction
Skin Cancer *  Artifact Removal
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Figure 3. Proposed working architecture
This figure 3 presents a complete skin cancer detection pipeline
using deep learning, specifically the ResNetl152 model, and
outlines each major stage from data acquisition to final
diagnosis. The process is divided into five key phases, ensuring
high-quality preprocessing, efficient model training, and
accurate lesion classification.
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1. Dataset Preparation and Data Cleaning

The process begins with a curated skin cancer dataset

containing dermoscopic images of benign and malignant

lesions. Before training, the images undergo data cleaning to

eliminate noise and distortions. Key preprocessing steps

include:

e Artifact Removal: Removes hair, glare, and background
noise to avoid false feature extraction.

e Noise Reduction: Applies filters (e.g., median or
Gaussian) to smooth images while preserving lesion edges.

e Bias Field Correction: Adjusts uneven illumination
across images.

e Standardization & Normalization: Ensures consistent
pixel intensity ranges, improving model convergence.
This step guarantees uniform and high-quality input images for

downstream analysis.

2. Image Segmentation

Segmentation isolates the region of interest (ROI) — the skin

lesion — from the surrounding skin. This is crucial because

irrelevant  background features can degrade model

performance.

Methods used include:

e Thresholding: Separates lesion regions based on pixel
intensity differences.

e Region Growing: Expands from a seed point to include
neighboring pixels with similar characteristics.

e  Watershed Algorithm: Detects precise lesion boundaries
using gradient-based separation.

Effective segmentation enhances the model’s ability to focus on

diagnostic features such as shape, symmetry, and color

distribution.

3. Feature Extraction

After segmentation, critical features are extracted for model

input. Two major categories are highlighted:

e Histogram-Based Features: Capture pixel intensity
distribution and color variation within the lesion.

e Shape Features: Quantify lesion geometry—such as
border irregularity, asymmetry, and compactness—which
are key indicators for melanoma detection.

This combination provides a comprehensive representation of

both textural and morphological characteristics of the lesion.

4. Deep Learning Model (ResNet152) and Model Training

The extracted data are divided into training and testing sets. The

ResNet152 model, a deep convolutional neural network with

152 layers, is employed for classification.

e Residual Connections in ResNet prevent vanishing
gradients and allow deeper network training.

e The model learns to distinguish between malignant and
benign patterns through backpropagation and gradient
optimization.

e During model training, weights are iteratively updated to
minimize error between predicted and actual labels,
leading to a trained model capable of automated lesion
classification.

5. Performance Evaluation

The trained model is validated using unseen test data, and its

diagnostic efficiency is measured through key performance

metrics:

e Accuracy: Proportion of correctly classified images (both
benign and malignant).

e Specificity: Ability to correctly identify non-cancerous
(benign) cases, minimizing false positives.

e  Sensitivity: Ability to correctly detect malignant lesions,
reducing false negatives.

These metrics ensure that the model performs reliably and

consistently across diverse patient cases.

Final Output: Prediction

The final stage involves applying the trained model to new
dermoscopic images. Based on learned features, the model
predicts whether a lesion is malignant (cancerous) or benign
(non-cancerous).

This automated workflow provides clinicians with a decision-
support tool that enhances diagnostic accuracy, reduces human
subjectivity, and enables faster screening, especially beneficial
for large-scale or remote healthcare settings.

Proposed algorithm

Step 1: Dataset Preparation

e Collect a reliable dataset of skin cancer images from
sources such as ISIC or HAM10000.

e  Split the dataset into training, validation, and testing sets
(for example, 70% for training, 15% for validation, 15%
for testing).

e Maintain class balance between benign and malignant
categories to ensure unbiased learning.

Step 2: Data Cleaning

e Artifact Removal: Remove unwanted elements such as
hair, ruler marks, and glare from images.

e Noise Reduction: Apply median or Gaussian filters to
smooth the images while preserving edges.

e Bias Field Correction: Adjust lighting inconsistencies
across images for uniform brightness.

e Normalization: Resize all images to a fixed resolution
(e.g., 448%x448) and normalize pixel values for model
compatibility.

Step 3: Image Segmentation

e Apply segmentation techniques to extract the lesion region
from the background.
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e Thresholding: Separate lesion pixels from healthy skin
based on intensity values.

e Region Growing: Expand the lesion area starting from a
seed pixel with similar characteristics.

e  Watershed Algorithm: Refine lesion borders and prevent
over-segmentation.

e Save the segmented lesion as the Region of Interest (ROI)
for further processing.

Step 4: Feature Extraction

e Extract significant features that represent the lesion’s

characteristics.

e Histogram-Based Features: Capture intensity and color
distributions.

e Shape-Based Features: Measure lesion irregularity,

asymmetry, and border smoothness.

e These features may optionally be combined with deep
features from the neural network for improved accuracy.

Step 5: Data Augmentation

e Increase dataset diversity to prevent overfitting.

e Apply transformations such as rotation, flipping, scaling,
brightness adjustment, and cropping.

e Ensure class balance using techniques like oversampling
or weighted loss functions.

Step 6: Model Construction (ResNet152)

e Use a pre-trained ResNet152 model as the backbone.

e Replace the final fully connected layer with a custom
classifier having two output classes — malignant and
benign.

e Incorporate dropout and batch normalization layers to
enhance model generalization.

e  The deep residual blocks in ResNet help maintain gradient
flow, enabling better learning in very deep networks.

Step 7: Model Training

e Feed the cleaned and segmented images into the model.

e Use training data to adjust the model’s weights through
backpropagation.

e Optimize the model using algorithms like Adam or
AdamW with an appropriate learning rate.

e  Validate performance after each epoch using the validation
dataset.

e Employ early stopping to prevent overfitting when the
validation loss stops improving.

Step 8: Model Testing and Evaluation

e  Test the trained model on the unseen test dataset.

e Evaluate its performance using:

e Accuracy: Correct predictions over total predictions.

o Sensitivity (Recall): Correct identification of malignant

cases.

Specificity: Correct identification of benign cases.

e Fl-score and AUC: For overall model robustness.

e Save the best-performing model based on validation
metrics.

Step 9: Model Prediction

e Use the trained ResNetl52 model to classify new input
images.

e Predict the probability of each image belonging to
malignant or benign classes.

e  Assign the final label based on a predefined threshold (for
example, 0.5 probability).

IV. IMPLEMENTATION AND RESULT
DISCUSSION

Dataset

he University of Waterloo Vision and Image Processing (VIP)
Lab Skin Cancer Detection Dataset is a curated collection of
dermatological photographs designed for melanoma and
general skin lesion analysis. It contains images sourced from
DermlS and DermQuest, accompanied by manually created
segmentation masks that delineate lesion regions from
surrounding skin. The dataset emphasizes consumer-grade
photography, capturing images under natural and varied
lighting conditions to simulate real-world scenarios rather than
controlled dermatoscopic imaging. Preprocessing includes
illumination correction, artifact removal, and texture-based
segmentation to enhance clarity and consistency. Additionally,
it supports the extraction of High-Level Intuitive Features
(HLIFs) such as asymmetry, border irregularity, and color
variation, aligning with clinical diagnostic criteria like the
ABCD rule. Designed for research in melanoma detection,
segmentation, and explainable Al, this dataset enables both
algorithm development and clinical decision-support studies.

https://uwaterloo.ca/vision-image-processing-lab/research-
demos/skin-cancer-detection

Illustrative example

Model accuracy

o 2 “*
Epoch

Figure 4. The training and validation accuracy

The figure 4 illustrates the training and validation accuracy of
a deep learning model over 10 epochs. The training accuracy
(blue line) shows a steady improvement from approximately
0.82 to 0.97, indicating effective learning on the training data.
In contrast, the validation accuracy (orange line) fluctuates
between 0.84 and 0.89, suggesting minor instability and
possible overfitting as the model performs better on training
data than validation data. Overall, the model demonstrates
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strong training performance but requires further optimization to
improve generalization on unseen data.

Model loss
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o5 validation loss
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Figure 5. Model loss for training and validation data

The figure 5 shows the training and validation loss of a deep
learning model over 10 epochs. The training loss (blue line)
decreases steadily from about 0.4 to below 0.1, demonstrating
consistent learning and convergence on the training data.
However, the validation loss (orange line) fluctuates between
0.3 and 0.5, indicating instability and possible overfitting. The
model continues to improve on the training data, but its
generalization on unseen validation data does not improve
consistently, suggesting that additional regularization or early

stopping may be needed to enhance performance stability.
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Figure 6. Skin lesion with a label "Prediction - malignant”

The figure 6 displays a dermoscopic view of a malignant skin
lesion, as predicted by the trained deep learning model. The
lesion exhibits irregular pigmentation, asymmetrical borders,
and dark brown clusters—hallmark indicators of melanoma.
Subtle vascular and textural variations across the surface are
also visible, emphasizing cellular irregularity. Fine hair
artifacts and natural skin texture remain intact, highlighting the
model’s precision in isolating lesion regions. This visualization
reflects the model’s capability to identify malignant features
with remarkable accuracy, aligning clinical pathology with
intelligent computational diagnosis.

Prediction - benign
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Figure 7. Skin lesion labeled "Prediction - benign

The figure 7 shows a dermoscopic view of a benign skin lesion,
as predicted by the deep learning model. The lesion appears
symmetrical, with uniform color distribution and smooth, well-
defined borders, typical characteristics of non-cancerous
moles. The reddish-brown pigmentation blends gradually with
the surrounding skin, indicating low malignancy potential. The
texture is even, and there are no visible irregular streaks or dark
nodules. This visualization highlights the model’s precision in
distinguishing benign formations from malignant ones,
demonstrating its strength in accurate, non-invasive
dermatological assessment and intelligent medical image
interpretation.

Result and Discussion
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Figure 8. Comparative bar chart illustrating the performance
of three deep learning architectures

Figure 8 presents a comparative bar chart illustrating the
performance of three deep learning architectures ResNet50,
ResNet101, and ResNet152 across four key evaluation metrics:
accuracy, precision, recall, and Fl-score. The visualization
clearly demonstrates that as the network depth increases,
performance metrics improve consistently. Among the three,
ResNet152 achieves the highest accuracy (97%), precision
(98%), recall (97%), and F1-score (98%), indicating superior
feature extraction and classification capability. In contrast,
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ResNet50 and ResNetl01 perform well but show
comparatively lower precision and recall. This comparison
validates that deeper residual networks like ResNetl52 are
more effective in capturing complex lesion patterns and subtle
texture variations, leading to more reliable and precise
classification in automated skin cancer diagnosis systems.

V. CONCLUSION

The proposed deep learning framework, built on the
ResNet152 architecture, demonstrates superior performance
compared to ResNet50 and ResNetlOl in skin cancer
classification. The model achieved remarkable improvements
in accuracy (97%), precision (98%), recall (97%), and F1-score
(98%), validating its robustness in identifying malignant and
benign lesions. The inclusion of systematic preprocessing,
segmentation, and feature extraction significantly enhanced
lesion visibility and diagnostic reliability. Despite excellent
results, slight wvalidation fluctuations suggest potential
overfitting that can be mitigated through larger and more
diverse datasets. Future research can explore multi-modal
fusion of dermoscopic, histopathological, and clinical data,
explainable Al (XAl) for transparent diagnostics, and real-time
IoT or mobile-based deployment to enable accessible,
automated, and trustworthy skin cancer detection in clinical and
remote environments worldwide.
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