

© 2025 IJSRET
1

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

Performance Optimization of Cloud-Based

Microservices: A Comparative Study
Mr. Akash Godere, Mr. Javeed Khan

College – Babulal Tarabai Institute Of Research And Technology Sagar

Abstract - Micro services architectures on cloud platforms offer scalability and flexibility, but performance optimization remains

a key challenge. This paper presents a comparative study of different optimization techniques for cloud-based microservices,

focusing on resource utilization, load balancing, and response time reduction. Experimental evaluation on AWS and Kubernetes

demonstrates significant improvements in throughput and latency when employing container- level optimization, dynamic

scaling, and efficient service orchestration. The study provides actionable insights for cloud architects and developers to achieve

optimal performance in microservices deployments.

Keywords - Microservices Architecture, Cloud Computing, Performance Optimization, Resource Utilization, Load Balancing.

INTRODUCTION

Cloud-native microservices enable independent deployment,

rapid scaling, and modular application design. High traffic

loads, resource contention, and improper orchestration can

degrade performance. Optimizing microservices involves

balancing resource allocation, load distribution, and response

time while maintaining fault tolerance.

Objective: Evaluate performance optimization strategies for

cloud-based microservices and propose a framework to

improve throughput, minimize latency, and optimize cloud

resource usage.

II. LITERATURE REVIEW

Micro services Performance Challenges:

 Network latency, inter-service communication overhead.

 Uneven resource utilization and scaling bottlenecks.

Optimization Techniques:

 Horizontal & Vertical Scaling for dynamic load.

 Load Balancing Algorithms: Round Robin, Least

Connections, Weighted Distribution.

 Caching and Database Optimization

Existing Studies:

 Kubernetes auto scaling for dynamic workloads.

 Cloud cost vs. performance trade-offs.

 Container resource limits and requests tuning.

Research Gap: Limited comparative studies on multiple

optimization strategies under varying workloads on cloud-

based micro services.

Proposed Framework

Figure 1: Performance Optimization Framework Diagram

Description:

 Micro services Layer: Deployed in Docker containers

 Orchestration Layer: Kubernetes manages pods and

services

 Monitoring & Metrics: Prometheus collects CPU, memory,

latency, throughput

 Load Balancer: Directs traffic using adaptive algorithms

 Optimization Engine: Adjusts resources, scales pods, tunes

container parameters

Key Features:

© 2025 IJSRET
2

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

 Dynamic Horizontal Pod Auto scaling based on

CPU/memory metrics

 Container resource tuning (CPU/memory requests and

limits)

 Efficient load balancing across microservices

 Caching for frequently requested data

 Logging and monitoring to detect bottlenecks

Implementation

Cloud Platform:

 AWS Elastic Kubernetes Service (EKS)

 Docker containers for each micro service

Tools & Technologies:

 Kubernetes HPA (Horizontal Pod Autoscaler)

 Prometheus & Grafana for monitoring

 Nginx Ingress Controller for load balancing

 Redis caching for database optimization

Test Scenarios:

 Varying workloads (100, 500, 1000 requests/sec)

 Measure response time, CPU/memory utilization,

throughput

Results & Discussion

Observations

Optimization

Strategy

Avg

Res

pon

se

Tim

e

CPU

Utilization
Throug

hput

No Optimization 120ms 75% 800

req/sec

Auto scaling Only 90ms 65% 950

req/sec

Auto scaling + Load

Balancing

70ms 55% 1100

req/sec

Full Optimization

(Caching +

Tuning)

50ms 45% 1250

req/sec

Discussion:

 Auto scaling improves throughput under high load

 Load balancing reduces response time variability

 Resource tuning and caching lead to maximum

performance gains

 Framework adapts to workload dynamically, optimizing

cloud cost and performance

III. CONCLUSION & FUTURE WORK

Study demonstrates performance gains with dynamic scaling,

load balancing, and tuning. Future work includes AI-based

predictive scaling, multi-cloud orchestration, and energy-

efficient optimization.

REFERENCES

1. Dragoni, N., et al., Microservices: Yesterday, Today, and

Tomorrow, Present and Ulterior Software Engineering,

2017

2. Burns, B., et al., Kubernetes: Up and Running, O’Reilly

Media, 2018

3. Thönes, J., Microservices Architecture, IEEE Software,

vol. 32, no. 1, pp. 116–116, 2015

4. Chen, L., et al., Cloud Performance Optimization for

Microservices Applications, IEEE Transactions on Cloud

Computing, 2020

5. Namiot, D., Sneps-Sneppe, M., On Micro-services

Architecture, International Journal of

6. Open Information Technologies, 2014

