International Journal of Scientific Research & Engineering Trends

LIS Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

Performance Optimization of Cloud-Based
Microservices: A Comparative Study

Mr. Akash Godere, Mr. Javeed Khan
College — Babulal Tarabai Institute Of Research And Technology Sagar

Abstract - Micro services architectures on cloud platforms offer scalability and flexibility, but performance optimization remains
a key challenge. This paper presents a comparative study of different optimization techniques for cloud-based microservices,
focusing on resource utilization, load balancing, and response time reduction. Experimental evaluation on AWS and Kubernetes
demonstrates significant improvements in throughput and latency when employing container- level optimization, dynamic
scaling, and efficient service orchestration. The study provides actionable insights for cloud architects and developers to achieve

optimal performance in microservices deployments.

Keywords - Microservices Architecture, Cloud Computing, Performance Optimization, Resource Utilization, Load Balancing.

INTRODUCTION

Cloud-native microservices enable independent deployment,
rapid scaling, and modular application design. High traffic
loads, resource contention, and improper orchestration can
degrade performance. Optimizing microservices involves
balancing resource allocation, load distribution, and response
time while maintaining fault tolerance.

Objective: Evaluate performance optimization strategies for
cloud-based microservices and propose a framework to
improve throughput, minimize latency, and optimize cloud
resource usage.

II. LITERATURE REVIEW
Micro services Performance Challenges:

e Network latency, inter-service communication overhead.
e Uneven resource utilization and scaling bottlenecks.

Optimization Techniques:

e Horizontal & Vertical Scaling for dynamic load.

e Load Balancing Algorithms: Round Robin,
Connections, Weighted Distribution.

e Caching and Database Optimization

Least

Existing Studies:

e Kubernetes auto scaling for dynamic workloads.
e Cloud cost vs. performance trade-offs.

e Container resource limits and requests tuning.

Research Gap: Limited comparative studies on multiple
optimization strategies under varying workloads on cloud-
based micro services.

Proposed Framework
Performance Optimization Framework

Identify
Performance
Issues

Implement
Changes
Optimize
Solutions

Analyze
Causes

Figure 1: Performance Optimization Framework Diagram
Description:

e Micro services Layer: Deployed in Docker containers

e Orchestration Layer: Kubernetes manages pods and
services

e Monitoring & Metrics: Prometheus collects CPU, memory,
latency, throughput

e Load Balancer: Directs traffic using adaptive algorithms

e Optimization Engine: Adjusts resources, scales pods, tunes
container parameters

Key Features:

© 2025 JSRET

1

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 5, Sep-Oct-2025, ISSN (Online): 2395-566X

Dynamic Horizontal Pod Auto scaling based on
CPU/memory metrics

Container resource tuning (CPU/memory requests and
limits)

Efficient load balancing across microservices

Caching for frequently requested data

Logging and monitoring to detect bottlenecks

Implementation
Cloud Platform:

AWS Elastic Kubernetes Service (EKS)

e Docker containers for each micro service

Tools & Technologies:

Kubernetes HPA (Horizontal Pod Autoscaler)
Prometheus & Grafana for monitoring
Nginx Ingress Controller for load balancing
Redis caching for database optimization

Test Scenarios:

Varying workloads (100, 500, 1000 requests/sec)

e Measure response time, CPU/memory utilization,
throughput
Results & Discussion
Observations
N A
Optimization Ve Res .C.:PU. Throug
Strategy Utilization| ppyt
pon
se
Tim
e
No Optimization 120ms 75% 800
reg/sec
Auto scaling Only 90ms 65% 950
reg/sec
Auto scaling + Load 70ms 55% 1100
Balancing reg/sec
Full thlmlzatlon 50ms 45% 1250
(Caching + reg/sec
Tuning)
Discussion:

Auto scaling improves throughput under high load

Load balancing reduces response time variability
Resource tuning and caching lead to maximum
performance gains

Framework adapts to workload dynamically, optimizing
cloud cost and performance

III. CONCLUSION & FUTURE WORK

Study demonstrates performance gains with dynamic scaling,
load balancing, and tuning. Future work includes Al-based
predictive scaling, multi-cloud orchestration, and energy-
efficient optimization.

REFERENCES

1. Dragoni, N, et al., Microservices: Yesterday, Today, and
Tomorrow, Present and Ulterior Software Engineering,
2017

2. Burns, B, et al., Kubernetes: Up and Running, O’Reilly
Media, 2018

3. Thones, J., Microservices Architecture, IEEE Software,
vol. 32, no. 1, pp. 116-116, 2015

4. Chen, L., et al.,, Cloud Performance Optimization for
Microservices Applications, IEEE Transactions on Cloud
Computing, 2020

5. Namiot, D., Sneps-Sneppe, M., On Micro-services
Architecture, International Journal of

6. Open Information Technologies, 2014

© 2025 IJSRET

2

