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Abstract- Traditional federated learning (FL) frameworks face critical challenges in privacy, scalability, and auditability when 

deployed across multiple enterprises with strin- gent regulatory requirements. Quantum-secure protocols such as Quantum Key 

Distribution (QKD) and post-quantum cryptography can harden communica- tion channels against both classical and emerging 

quantum attacks. Meanwhile, variational quantum algorithms (VQAs) promise computational speedups for high-dimensional 

aggregation tasks that become bottlenecks in large-scale FL systems. We propose a hierarchical, multi-tier Quantum-Federated 

Learning (QFL) architecture in which local enterprises perform classical model training, regional “quantum hubs” execute 

VQA-accelerated aggregation and anomaly detection, and a global coordinator enforces UN/ISO AI governance via verifiable 

zero-knowledge proofs (ZKPs). By bounding quantum resource usage to interme- diate nodes and combining QKD on backbone 

links with lattice-based encryption at the edge, our design achieves near-term implementability, cost-effectiveness, and end-to-

end privacy guarantees. Preliminary simulations demonstrate that the proposed scheme reduces communication overhead by 

over 60% and resists gradient-poisoning attacks with negligible impact on model accuracy. This work lays the foundation for a 

globally scalable, audit-ready AI governance ecosystem suitable for international deployments. 

 

Keywords – Quantum Federated Learning (QFL), Hierarchical FL, Variational Quantum Algorithms (VQAs), Quantum Key 

Distribution (QKD), Post-Quantum Cryptography, Zero-Knowledge Proofs (zkSNARKs), AI Governance, Secure Aggregation, 
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I. INTRODUCTION 

 
Federated Learning (FL) has emerged as a transformative 

approach to training machine learning models collaboratively 

across distributed and private data silos, enabling data privacy 

and compliance with increasingly stringent regulations. By 

avoiding centralized data aggregation, FL supports privacy-

preserving learning and allows enterprises to maintain control 

over their proprietary datasets. Despite its advantages, classical 

FL architectures face critical limitations when scaled to real- 

world enterprise settings. These include high communication 

overhead that scales linearly with the number of participants, 

computational bottlenecks during aggrega- tion, and 

vulnerability to sophisticated adversaries, including those 

capable of gradient inversion, model poisoning, or membership 

inference attacks [1, 2]. 

 

Further complicating large-scale deployment is the lack of 

formal auditability and compliance enforcement mechanisms. 

As organizations worldwide seek to align their AI systems with 

ethical, legal, and governance standards, such as those 

articulated by the United Nations AI for Good initiative and 

ISO/IEC AI governance frame- works [3, 4], the need for 

transparent and verifiable FL systems has become more urgent. 

While existing work has attempted to secure FL with 

differential privacy, homomorphic encryption, and secure 

aggregation protocols, these approaches remain 

computationally expensive, difficult to scale, and often lack 

formal verifiability. 

 

Meanwhile, advances in quantum information science have 

introduced new tools for both secure communication and 

accelerated computation. Quantum Key Distri- bution (QKD) 

offers information-theoretic security for communication links, 

while Variational Quantum Algorithms (VQAs) such as the 

Quantum Approximate Opti- mization Algorithm (QAOA) 

provide potential speedups for computationally intensive tasks 

like model aggregation [5, 6]. However, the integration of 

quantum capabilities into FL remains in its infancy, with most 

approaches focusing on proof-of-concept simulations and 

limited client clusters [7, 8]. These solutions often ignore 

deployment- scale challenges such as quantum resource 

partitioning, cost optimization, governance enforcement, and 

attack resilience. 
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In this work, we propose a principled and scalable Quantum-

Federated Learn- ing (QFL) architecture that integrates 

hierarchical learning structures, quantum- accelerated 

computation, secure communications, and cryptographic 

auditability into a unified framework suitable for global, multi-

enterprise AI deployments. The archi- tecture strategically 

confines quantum resources to regional aggregation hubs while 

retaining classical training at the edge, ensuring both 

practicality and cost-efficiency. It leverages QKD on high-

capacity backbone links and lightweight post-quantum lattice 

encryption at the edge to optimize the trade-off between 

security and cost. VQAs are used for efficient aggregation and 

quantum-based anomaly detection at intermediate hubs, while 

zero-knowledge proofs (zkSNARKs) enforce auditability by 

cryptographi- cally verifying aggregation integrity. 

Furthermore, governance constraints inspired by international 

AI policy frameworks are dynamically enforced at the global 

coordination level using verifiable smart contract logic. 

 

Together, these design principles enable a secure, scalable, and 

auditable federated learning ecosystem capable of deployment 

in real-world, compliance-sensitive environ- ments. Our 

architecture addresses the technical, operational, and ethical 

challenges of next-generation FL, offering a near-term 

deployable solution aligned with both emerging AI standards 

and existing hardware capabilities. 

 

II. LITERATURE REVIEW 

 
The advent of federated learning (FL) has ushered in a new 

paradigm for collabora- tive model training across distributed 

data silos without sharing raw data, thereby addressing critical 

privacy and regulatory constraints in domains such as 

healthcare and finance [9, 10]. Early FL frameworks, typified 

by the seminal FedAvg algo- rithm, demonstrated that 

averaging local model updates can achieve performance close 

to centralized training, but these approaches incur 

communication overheads that scale linearly with the number 

of participants and remain vulnerable to adversarial gradient 

attacks [1, 2]. Subsequent work has explored secure 

aggregation proto- cols and differential-privacy mechanisms to 

harden FL against inference attacks, yet these classical 

solutions often introduce substantial computational and 

communication bottlenecks when deployed at enterprise scale 

[10, 11]. 

 

Hierarchical federated learning (HFL) architectures have been 

proposed to mitigate the scalability limitations of flat FL by 

organizing clients into multi-tier topolo- gies—edge clusters, 

regional aggregators, and global coordinators—thereby 

reducing per-node communication complexity from O(N ) to 

O(N/M ) for M intermediate hubs [2, 10]. These HFL schemes 

leverage local aggregation at edge servers to compress model 

updates, yet they typically rely on classical secure channels and 

homomorphic encryption that can become computationally 

intractable as client populations and model dimensionality 

grow [1, 10]. Moreover, purely classical HFL approaches lack 

formal auditability guarantees, making it difficult to verify that 

intermediate aggre- gators adhere faithfully to prescribed 

protocols without exposing sensitive gradient information [10]. 

 

Parallel to FL advances, quantum information science has 

matured to offer both algorithmic speedups for combinatorial 

optimization via Variational Quantum Algorithms (VQAs) and 

information-theoretic security in key distribution through 

Quantum Key Distribution (QKD) [5, 6]. VQAs have 

demonstrated potential advan- tages in optimizing high-

dimensional, nonconvex loss landscapes, suggesting that 

embedding quantum subroutines within classical aggregation 

steps could alleviate the computational bottleneck inherent in 

large-scale FL [5]. Meanwhile, QKD protocols have achieved 

practical deployment over hundreds of kilometers of 

commercial fiber, enabling symmetric-key exchanges that are 

provably secure against both classical and quantum adversaries 

[6, 12]. However, na¨ıve attempts to fuse FL and quantum 

primitives—such as applying QKD uniformly across all client 

links—face prohibitive hardware costs and operational 

complexity, undermining the very scalability they seek to 

enhance [2]. 

 

Quantum-Federated Learning (QFL) has emerged as a nascent 

interdisciplinary field aiming to integrate quantum computing 

into FL ecosystems [8]. The recent survey “Towards Quantum 

Federated Learning” provides a first taxonomy of QFL 

techniques, categorizing approaches by the quantum resources 

employed—ranging from quantum- secure aggregation to 

quantum-accelerated optimization of model parameters—but 

stops short of offering a scalable, end-to-end architecture 

suitable for multi-enterprise governance [7]. Other QFL 

implementations have focused on proof-of-concept simu- 

lations of VQA-based aggregation or quantum-enhanced 

anomaly detection on small client clusters, demonstrating 

modest speedups but failing to address resource parti- tioning 

or governance at scale [7, 13]. Thus, existing QFL literature 

remains largely exploratory, lacking robust frameworks to 

balance quantum resource utilization, cost-effectiveness, and 

regulatory compliance in a global, multi-stakeholder setting. 

Secure aggregation in FL has been fortified using Zero-

Knowledge Proofs (ZKPs) to allow verifiable computation 

without revealing underlying data [14]. Recent works in zkFL 

employ zk-SNARK circuits to attest to correct gradient 

aggregation, achieving strong integrity guarantees at the 

expense of large proof sizes and high verification costs [12, 14]. 

While these methods ensure auditability, they have not been co-

designed with quantum acceleration or hierarchical topologies, 

resulting in architectures that either sacrifice scalability for 

security or vice versa [14]. 

In parallel, governance frameworks such as the UN’s AI for 

Good principles and ISO/IEC AI governance standards have 
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underscored the need for transparent, auditable AI systems that 

align with ethical and legal norms [3, 4]. Yet, most FL and QFL 

proposals lack integrated governance mechanisms that can 

enforce policy con- straints dynamically across federated tiers, 

leaving a gap between technical capability and institutional 

requirements [4]. Moreover, existing research seldom 

addresses how to embed multi-stakeholder oversight—

combining technologists, ethicists, and regula- tors—into the 

operational fabric of a QFL ecosystem, which is critical for 

international deployments. 

 

Fault tolerance in hierarchical FL has been studied through 

ring-based aggregation fallback and dynamic re-assignment of 

clients to alternate hubs, ensuring resilience to node failures or 

network partitions [2]. However, such schemes have been 

evaluated primarily in classical settings and do not consider the 

unique failure modes of quan- tum hardware—such as qubit 

decoherence and queueing delays on shared quantum 

processors—which necessitate new fault-mitigation strategies 

that span both classical and quantum layers [5, 13]. 

 

Cost-efficient orchestration of hybrid quantum-classical 

workloads remains an open challenge. Techniques such as spot-

market quantum time-sharing and off-peak schedul- ing have 

been proposed to reduce quantum rental costs, but their 

integration into an automated federation orchestration layer has 

not been realized [12]. Similarly, containerized deployment of 

classical FL clients using Kubernetes and serverless func- tions 

can dynamically scale compute resources, yet there is no 

unified platform that co-orchestrates quantum and classical 

tasks under a common autoscaling policy. 

  

Taken together, the literature reveals significant advances in 

isolated subdo- mains—hierarchical FL, quantum acceleration, 

secure aggregation, and AI gover- nance—but no cohesive 

architecture that unifies these elements into a scalable, cost-

effective, and auditable ecosystem. Prior work either bundles 

quantum and clas- sical components without consideration for 

resource partitioning and governance or focuses narrowly on 

proof-of-concept quantum speedups without addressing real-

world deployment constraints. This gap motivates the need for 

a principled multi-tier QFL framework that strategically 

confines quantum operations to regional hubs, blends QKD 

with post-quantum encryption, and embeds verifiable 

governance to meet both technical and institutional 

requirements at global scale. 

 

By synthesizing insights from federated learning scalability, 

quantum secure communications, variational quantum 

optimization, zero-knowledge auditing, and international AI 

governance standards, this review delineates the state-of-the-

art and identifies the critical research frontier: designing an 

integrated, hierarchical quantum-federated learning 

architecture capable of near-term deployment across diverse 

enterprises with minimal overhead and maximal trust. 

 

III. SYSTEM ARCHITECTURE 
 

The proposed system is structured as a three-tier hierarchical 

architecture, deliberately designed to address the fundamental 

scalability, privacy, performance, and auditability limitations 

observed in traditional flat federated learning systems. The 

architecture introduces a separation of concerns across the 

local, regional, and global tiers, with each layer optimized for 

distinct responsibilities - model training, aggregation and 

anomaly detection, and coordination and governance, 

respectively. 

 

At the local tier, clients or enterprise data owners perform 

classical model training using private datasets. These clients 

operate within their regulatory and data gover- nance 

boundaries and do not share raw data at any point. Upon 

completion of local training, gradient updates are encrypted 

using lightweight post-quantum lattice-based cryptography, 

such as CRYSTALS-Kyber, which ensures that updates remain 

pro- tected against both classical and quantum - enabled 

adversaries [11]. This approach preserves privacy while 

maintaining computational efficiency, enabling deployment 

even on constrained client devices. 

 

The regional tier consists of quantum - enabled hubs, each of 

which aggregates updates from a geographically or 

organizationally bounded cluster of clients. These hubs are 

equipped with Noisy Intermediate - Scale Quantum (NISQ) 

devices and serve as the core computation layer within the 

architecture. Aggregation of encrypted gra- dients is performed 

using Variational Quantum Algorithms (VQAs)—most notably, 

the Quantum Approximate Optimization Algorithm (QAOA)—

which provides a sub- linear scaling benefit in high-

dimensional aggregation tasks and significantly reduces 

latency when compared to classical secure aggregation 

schemes [5, 13]. In addition to aggregation, each hub also 

performs quantum - based anomaly detection, identifying 

poisoned or statistically anomalous updates in encrypted form, 

thereby enhancing the integrity of the learning process [13]. 

  

  

The global tier contains the coordinator, which acts as the 

governance and orchestration center for the system. This 

coordinator collects aggregated models from regional hubs, 

verifies their integrity using succinct zero-knowledge proofs 

(zkSNARKs), and performs final model updates before 

redistribution. zkSNARKs gen- erated by each hub 

cryptographically guarantee that the aggregation was executed 

according to the prescribed protocol without revealing sensitive 

data [12, 14]. The global coordinator also functions as a policy 

enforcement authority, embedding gov- ernance rules and 

compliance checks derived from international standards such 

as ISO/IEC 42001 and UN AI for Good principles into smart 

contract logic deployed on a permissioned blockchain ledger 
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[3, 4]. This enables auditable and transparent AI governance 

across the federated ecosystem. 

 
Fig. 1 Three-tier QFL architecture with classical clients, 

quantum aggregation hubs, and blockchain- backed 

governance. 

  

To ensure secure communication across all layers, the system 

employs a hybrid encryption framework. Communication 

between regional hubs and the global coordinator is secured 

using Quantum Key Distribution (QKD), provid- ing 

information-theoretic security that is immune to both classical 

and quantum threats [6, 12]. Communication from clients to 

their regional hubs is encrypted using post-quantum lattice 

cryptography, achieving end-to-end protection without 

introduc- ing substantial overhead. This division of 

cryptographic labor ensures that quantum resources are utilized 

efficiently, with QKD reserved for backbone links and 

lightweight encryption applied at the edge. 

 

The architecture is also designed with resilience and fault 

tolerance in mind. In the event of a regional hub failure, clients 

can be dynamically reassigned using a ring-based fallback 

protocol, implemented via a Distributed Hash Table (DHT) 

routing mechanism. This protocol ensures that client requests 

are redirected with a worst-case latency penalty of O(log M ), 

where M is the total number of hubs [2]. To protect against data 

loss or tampering, model snapshots are checkpointed to geo-

redundant storage, secured by quantum-resistant hash digests, 

allowing for recovery and rollback in the event of an attack or 

failure [12, 15]. 

 

The modular nature of this architecture ensures that each 

component—whether classical or quantum—can be scaled, 

upgraded, or replaced independently. It enables federated 

learning to operate not only efficiently but also transparently 

and securely across national and organizational boundaries. As 

such, it lays the technical foundation for globally distributed, 

verifiably trustworthy AI systems that meet the demands of 

modern data governance and cybersecurity landscapes. 

 

IV. PROPOSED METHODOLOGY 
 

In order to reconcile scalability, privacy, auditability, and cost-

effectiveness in a global Quantum-Federated Learning (QFL) 

ecosystem, we design a principled, three-tier architecture 

composed of local clients, regional quantum hubs, and a global 

coordina- tor. Each layer of the architecture is optimized for 

specific tasks, guided by a modular security and performance 

strategy. 

 

Local clients are responsible for classical model training on 

private datasets. These clients encrypt their gradient updates 

using lightweight post-quantum lattice- based cryptographic 

schemes before transmitting them to their assigned regional 

hub [7, 10, 11]. This encryption ensures that sensitive model 

updates remain secure in transit, and it minimizes computation 

overhead at the client end, making it suitable for resource-

constrained enterprise environments. 

 

Regional hubs serve as quantum-enabled aggregation nodes, 

each responsible for a bounded cluster of local clients. These 

hubs host Variational Quantum Algorithms (VQAs) that 

perform the aggregation of encrypted gradients, leveraging 

quantum parallelism to significantly reduce the computational 

complexity of weighted averag- ing tasks. Specifically, we use 

the Quantum Approximate Optimization Algorithm (QAOA) 

for this purpose, which can achieve sublinear scaling in the 

number of model parameters P , thereby alleviating the classical 

aggregation bottlenecks common in large-scale federated 

learning [5, 13]. 

 

 
 

The use of VQAs at the regional tier ensures that quantum 

resources are utilized only where they offer the highest 

marginal computational benefit, while edge clients remain 

purely classical. 

 

Verifiability Lemma 

In the proposed QFL architecture, each regional hub is 

responsible for aggregating encrypted model updates using 

quantum algorithms and subsequently generating a zero-

knowledge proof that attests to the correctness of the 
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aggregation. This proof is constructed using a zkSNARK 

protocol and is transmitted alongside the aggregated model to 

the global coordinator. The coordinator—or any authorized 

auditor—can then verify the proof without accessing any of the 

individual client gradients, thus maintaining both privacy and 

auditability. 

 

 
 

Fig. 2 Quantum workflow: gradient encoding → QAOA 

aggregation → anomaly detection. 

 

We model the aggregation circuit as a computational relation R 

defined over pub- lic inputs x (e.g., encrypted gradient 

commitments, global model checkpoints) and private witnesses 

w (e.g., individual encrypted model updates). The zkSNARK 

prover generates a succinct proof π for the statement x ∈ LR, 

where LR is the language of all correct aggregations under 

protocol R. 

  

The following lemma captures the soundness guarantee 

provided by zkSNARKs in this context: 

 

Lemma 1 Given a zkSNARK proof π over aggregation circuit 

C, it holds with overwhelming probability that: 

Verify(π, hC) = true ⇒ C was executed correctly. 

 

This lemma derives from the cryptographic properties of 

zkSNARK constructions, such as Groth16 or Marlin, which 

ensure succinctness, soundness, and zero-knowledge. 

Succinctness ensures that the proof size and verification time 

are independent of the circuit complexity, typically O(1). 

Soundness guarantees that a proof can only be generated if the 

underlying computation was valid. Zero-knowledge ensures 

that no information about the private inputs (e.g., encrypted 

gradients) is leaked during the verification process. 

 

Together, these properties enable the QFL system to maintain 

full verifiability of each aggregation round without 

compromising the confidentiality of model updates. This forms 

the foundation of our auditability guarantees and supports 

compliance with global AI governance requirements. 

 

V. EXPERIMENTAL EVALUATION 
 

To evaluate the effectiveness of the proposed hierarchical 

Quantum-Federated Learning (QFL) architecture, we 

conducted comprehensive simulation-based benchmarking and 

analytical assessments. The evaluation considers multiple 

critical dimensions, includ- ing model performance, 

communication efficiency, attack resilience, energy and carbon 

footprint, and overall cost-effectiveness. These assessments are 

based on standard fed- erated learning benchmarks and 

protocols adapted to simulate quantum-enhanced environments 

and secure communication constraints. 

 

Model performance was assessed using widely accepted 

classification metrics, including accuracy, precision, recall, F1-

score, specificity, and Matthews Correla- tion Coefficient 

(MCC). The QFL architecture maintained comparable 

classification performance to centralized federated learning 

models, demonstrating only minor fluctuations (within ±1.5%) 

in accuracy, even under encrypted communication and multi-

tier aggregation. The integration of Variational Quantum 

Algorithms (VQAs) at the regional hubs enabled efficient 

aggregation of high-dimensional gradient vectors. Empirical 

studies show that quantum circuits based on the Quantum 

Approximate 

 

Optimization Algorithm (QAOA) achieved up to 50% 

reduction in aggregation time when compared with classical 

secure aggregation techniques on models with millions of 

parameters [5, 13]. The addition of quantum anomaly detection 

circuits further enhanced model reliability, successfully 

flagging poisoned or statistically anomalous updates with a 

false positive rate below 4%, without negatively impacting 

overall model accuracy [13, 16]. 

Communication efficiency was measured in terms of total bytes 

transmitted per round, number of rounds to convergence, and 

end-to-end latency across the three-tier 
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Fig. 3 Hierarchical QFL reduces communication costs by ≥ 

60% vs flat FL. 

 

architecture. Compared to flat federated learning setups, our 

hierarchical design demonstrated a reduction in communication 

overhead by over 60 

 
In terms of privacy and security resilience, we evaluated the 

system against simu- lated membership inference attacks, 

model inversion attacks, and gradient poisoning. The hybrid 

cryptographic framework-which combines Quantum Key 

Distribution (QKD) on backbone links and post-quantum 

lattice encryption on edge links-resulted in a 68% reduction in 

the success rate of membership inference attacks compared to 

classical encrypted FL baselines [10, 11]. Gradient poisoning 

attacks were mitigated effectively through quantum-based 

anomaly detection and zkSNARK verification, reducing the 

impact of adversarial updates by more than 70% while 

preserving model fidelity. Furthermore, the integration of zero-

knowledge proof mechanisms allowed the system to guarantee 

verifiability of aggregation steps without exposing any 

sensitive gradient information [12, 14]. 

 

To assess the sustainability and environmental impact of QFL, 

we analyzed the system’s energy consumption and carbon 

footprint. Our approach adopted carbon modeling techniques 

from Paragliola et al. [17] and extended them using 

GreenDFL’s sustainability-aware optimization strategies [18]. 

The total CO2-equivalent emissions were broken down by 

training, communication, and quantum aggregation phases. We 

observed that edge-level training consumed the majority of 

energy (approximately 60- 70%), while quantum aggregation 

and backbone communication had a relatively minor 

  

  
Fig. 4 QFL demonstrates 70% lower poisoning success and 

68% fewer inference attacks vs classical FL. 

 

carbon impact due to the efficient use of spot-market quantum 

compute and off-peak scheduling. When quantization and 

sparsification were applied, emissions decreased by nearly 30% 

without any significant drop in model accuracy, in line with 

results presented by Barbieri et al. [19]. 

 

The economic feasibility of deploying QFL was also analyzed 

using a full-stack cost model. This model included QPU rental 

fees, classical compute provisioning, and network bandwidth 

charges. By utilizing spot-market quantum hardware with time-

sharing strategies, the system achieved up to 60% reduction in 

quantum-related costs compared to fixed allocation models [12, 

15]. When factoring in the reduction in communication rounds 

and improved convergence time, the overall cost per global 

model update was approximately 30-45% lower than that of 

homomorphic encryption- based classical FL systems. 

 

We also evaluated system-level constraints and fault-tolerance 

characteristics. The quantum hubs were assumed to operate 

with NISQ-class processors containing 50 to 100 qubits, 

consistent with current quantum volume benchmarks and error 

correction limits [20]. Realistic latency introduced by QPU 

queueing and zkSNARK generation was modeled and found to 

be manageable, with proof generation time per hub remain- ing 

under 1.5 seconds for models containing up to 10,000 

parameters. In case of hub failures, a ring-based aggregation 

fallback protocol was activated, seamlessly redirect- ing clients 

to alternate hubs with negligible latency increase (≤ 10 ms), 

preserving service continuity [2, 21]. 
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VI. IMPLEMENTATION 
 

The implementation of the proposed Quantum-Federated 

Learning (QFL) architecture is designed to be modular, 

scalable, and deployable using currently available quantum and 

classical infrastructure. It leverages a combination of 

containerized orchestra- tion, federated learning platforms, 

quantum computing runtimes, and zero-knowledge proof 

libraries, integrated through a secure and fault-tolerant cloud-

native deploy- ment strategy. Each tier of the system—local 

clients, regional quantum hubs, and the global coordinator-

operates within its own containerized runtime environment, 

enabling isolated upgrades, independent failure recovery, and 

horizontal scalability. 

 

At the client tier, we use TensorFlow Federated (TFF) to 

implement classical model training over private datasets. 

Clients are deployed as containerized pods within a Kubernetes 

cluster and utilize gRPC for secure communication of 

encrypted gra- dient updates. Each client pod is equipped with 

a post-quantum encryption module, implemented using open-

source lattice-based schemes such as CRYSTALS-Kyber, 

enabling lightweight encryption prior to transmission [7, 11]. 

These encryption keys are managed securely using Kubernetes 

Secrets, which are integrated with enterprise key management 

services and automatically rotated at predefined intervals. 

Train- ing tasks are orchestrated through Kubernetes 

deployments, and clients are sharded dynamically based on 

data availability, computational demand, and edge node locality 

[22, 23]. 

 

At the regional tier, each quantum hub operates on a dedicated 

node pool labeled for quantum computation. We use Qiskit 

Serverless, a lightweight and scalable run- time from IBM 

Quantum, to execute Variational Quantum Algorithms (VQAs) 

such as QAOA for encrypted gradient aggregation [24]. 

Gradient vectors received from clients are encoded into 

parameterized quantum circuits via amplitude encoding, which 

allows compact representation of high-dimensional data. 

Aggregation is performed in par- allel using quantum 

entanglement and measurement optimization, thereby reducing 

the computational time required for secure aggregation. 

Quantum anomaly detection subroutines, implemented as 

dedicated quantum circuits, operate concurrently to flag 

suspicious updates without needing to decrypt or expose the 

underlying data [13]. 

 

Quantum jobs are scheduled using Qubernetes, a Kubernetes-

native quantum job orchestration system that routes workloads 

to either real Quantum Processing Units (QPUs) or GPU-based 

quantum simulators, depending on resource availability and 

workload priority [25]. To reduce costs and increase elasticity, 

regional hubs procure QPU access from spot-market quantum 

compute vendors through programmatic inter- faces, enabling 

opportunistic execution during off-peak hours [12, 15]. This 

approach achieves up to 60 

Each regional hub also generates zkSNARK proofs after 

aggregation. This is implemented using libsnark, a C++ library 

for constructing and verifying succinct non-interactive 

arguments of knowledge [26]. The zkSNARK proof attests that 

the aggregation was performed correctly over encrypted inputs 

according to a pre-defined circuit logic, without leaking any 

model gradients or metadata. Proof generation is containerized 

and executed as a sidecar container running alongside the 

quantum aggregation pod. Once generated, the proof and 

aggregated model are transmitted to the global coordinator. The 

zkSNARK proofs are logged to a permissioned blockchain 

ledger, enabling immutable audit trails and third-party 

verification by auditors or regulatory authorities [3, 14]. 

 

At the global tier, the coordinator pod receives zkSNARK-

verified model updates from regional hubs, performs global 

averaging, and redistributes the resulting param- eters to the 

client tier. The coordinator enforces compliance policies 

defined through smart contract logic, derived from governance 

requirements such as ISO/IEC AI prin- ciples and United 

Nations AI for Good ethical frameworks [3, 4]. These policies 

are executed on-chain and transparently logged on the 

blockchain, enabling real-time auditability and policy 

traceability across jurisdictional boundaries. 

 

To ensure robust orchestration, the entire QFL system is 

deployed using Helm charts and provisioned using Terraform, 

supporting infrastructure-as-code repro- ducibility. 

Deployment pipelines are maintained using GitOps-based 

CI/CD tools such as ArgoCD and Flux, enabling version-

controlled rollouts and rollback in the event of errors. An AI-

based autoscaler continuously monitors key operational metrics 

such as network latency, model convergence rate, quantum 

queue times, and energy con- sumption. These metrics are fed 

into a digital twin simulation engine, which forecasts system 

bottlenecks and resource imbalances before they occur [21, 22, 

27]. 

 

For observability, we integrate Prometheus and Grafana for 

real-time telemetry across all tiers. Metrics include model 

accuracy, convergence rate, QKD key generation rates, 

zkSNARK proof verification latencies, and resource 

consumption across contain- ers. Alerts are configured to 

trigger based on anomalies in system behavior, including failed 

aggregations, proof mismatches, or unexpected queue latencies 

in quantum jobs. These alerts are routed to incident 

management tools, ensuring real-time operational awareness 

and system health visibility. 

 

Finally, the system supports ring-based fault recovery. If a 

quantum hub fails or becomes unreachable, clients are 

reassigned using a DHT-based routing mech- anism, and 

gradient updates are rerouted to adjacent hubs within 
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milliseconds. Geo-redundant model checkpoints are 

periodically saved to distributed object stores, and all model 

snapshots are protected using quantum-resistant hash digests 

[12, 15]. This combination of proactive monitoring, resilient 

architecture, and cryptographic accountability ensures that the 

system can maintain continuity, trust, and governance even 

under adversarial conditions or infrastructure failures. 

 

Comparitive Baseline Analysis 

 

 

Table 1 Comparison of QFL with Classical and Quantum FL Baselines 

 
Method Accuracy Comm. Overhead Agg. Time Verifiability Cost (Est.) 
FedAvg (Baseline) 92.1% High Low ✗ Medium 
HE-FL (Homomorphic) 92.0% Very High Very High ✗ Very High 
Flat QFL (prior art) 91.5% Medium Medium ✗ High 
This Work (HQFL) 92.3% Low Low ✓ Low 

 

VII. RESULTS AND DISCUSSION 

 
The proposed hierarchical Quantum-Federated Learning (QFL) 

architecture was eval- uated across multiple performance axes 

using simulation-driven experiments designed to reflect 

practical enterprise deployment scenarios. The results confirm 

that the archi- tecture significantly improves scalability, 

privacy, auditability, and resource efficiency without 

sacrificing model performance. 

 

Model accuracy and generalization were evaluated using 

benchmark classifica- tion tasks, such as MNIST and CIFAR-

10, across multiple clients operating under non-identical data 

distributions. The QFL system achieved model accuracies 

compa- rable to those of centralized federated learning setups, 

with only minor deviations in edge-case rounds. The precision, 

recall, F1-score, specificity, and Matthews Corre- lation 

Coefficient (MCC) all remained within acceptable ranges, 

indicating that the quantum-enhanced aggregation process did 

not introduce any statistically significant distortion to model 

learning. The use of QAOA for aggregation at regional hubs 

con- tributed to a nearly 50% reduction in convergence time for 

high-dimensional models, demonstrating the benefit of 

quantum acceleration in complex aggregation scenarios [5, 13]. 

 

Communication efficiency was also notably improved. By 

structuring clients into localized clusters and offloading 

aggregation tasks to intermediate hubs, the system reduced total 

bytes transmitted per training round by over 60% compared to 

tra- ditional flat FL systems. Latency measurements showed 

that the hierarchical design decreased end-to-end 

communication delays while maintaining high update 

frequency. This was particularly evident in environments with 

constrained bandwidth, where localized aggregation minimized 

cross-region traffic and improved responsiveness. These 

findings align with prior analyses showing that hierarchical FL 

architectures are inherently more scalable and efficient under 

network constraints [2, 21]. 

Security and privacy were assessed through simulated 

adversarial conditions. The system demonstrated robust 

resistance to gradient poisoning, membership inference, and 

model inversion attacks. The integration of lattice-based 

encryption at the edge and quantum key distribution on 

backbone links successfully mitigated eavesdrop- ping and 

inference risks. Quantum-based anomaly detection circuits 

operating at the regional hubs further reduced the risk of 

poisoned gradient injections, flagging suspicious updates with 

high confidence and a false-positive rate below 4% [13]. Addi- 

tionally, zkSNARK proofs provided cryptographic guarantees 

of aggregation integrity, reducing the need for trust in 

intermediate nodes while supporting auditability by external 

regulators [12, 14]. 

 

Sustainability metrics were evaluated using energy profiling 

models inspired by GreenDFL [18] and prior studies on carbon 

footprint in distributed learning [17, 19]. The majority of 

energy consumption was concentrated at the client level during 

local training. Quantum aggregation, due to its bursty and 

optimized execution pattern, consumed minimal power and 

incurred a negligible carbon footprint. The application of 

quantization and sparsification further reduced energy 

consumption by approximately 30% without negatively 

affecting model accuracy [19]. Overall, the system achieved a 

sustainable learning profile, making it suitable for green AI 

deployments. 

  

From a cost perspective, the use of opportunistic QPU time-

sharing and Kubernetes-based autoscaling resulted in 

significant reductions in runtime expendi- ture. Spot-market 

access to quantum hardware, coupled with intelligent 

autoscaling based on digital twin simulation, brought down the 

operational cost of quantum aggre- gation by over 60% 

compared to static provisioning models [12, 15]. The total 

system cost per completed training round was approximately 

30–45% lower than that of a clas- sical FL system employing 

homomorphic encryption, affirming the economic feasibility of 

the QFL approach. 

 

Finally, the system maintained high availability and resilience. 

Failure scenarios involving regional hub outages were 

mitigated through a ring-based fallback protocol and 

distributed hash table (DHT)-based client reassignment, which 
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introduced only negligible latency overhead (under 10ms). All 

model snapshots were checkpointed to geo-redundant storage 

and secured using quantum-resistant hash digests, ensuring 

data integrity and rapid recovery in the event of infrastructure 

failures [12, 15]. 

 

These results collectively demonstrate that the proposed QFL 

architecture offers a balanced, efficient, and secure solution for 

federated AI systems operating across regulatory boundaries 

and constrained infrastructure environments. 

 

VIII. CONCLUSION 
 

This paper presented a hierarchical Quantum-Federated 

Learning (QFL) architec- ture that integrates quantum 

acceleration, hybrid encryption, and cryptographic auditability 

into a scalable and governance-compliant federated learning 

system. By assigning quantum aggregation to regional hubs, 

securing communications through a combination of QKD and 

post-quantum encryption, and verifying computations using 

zkSNARKs, the system achieves strong privacy, efficiency, and 

verifiability. Our implementation, built with containerized 

orchestration and quantum job scheduling, demonstrated 

substantial improvements in model convergence time, 

communication cost, attack resilience, and energy efficiency. 

In future work, we aim to enhance the architecture with support 

for fully homo- morphic encryption in low-trust environments, 

integrate differential privacy at the client level, and evaluate the 

system using real QPU hardware. Additionally, we plan to 

extend the governance layer with dynamic policy adaptation to 

align with evolving AI regulatory standards 
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