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Abstract- Traditional federated learning (FL) frameworks face critical challenges in privacy, scalability, and auditability when
deployed across multiple enterprises with strin- gent regulatory requirements. Quantum-secure protocols such as Quantum Key
Distribution (QKD) and post-quantum cryptography can harden communica- tion channels against both classical and emerging
quantum attacks. Meanwhile, variational quantum algorithms (VQAs) promise computational speedups for high-dimensional
aggregation tasks that become bottlenecks in large-scale FL systems. We propose a hierarchical, multi-tier Quantum-Federated
Learning (QFL) architecture in which local enterprises perform classical model training, regional “quantum hubs” execute
VQA-accelerated aggregation and anomaly detection, and a global coordinator enforces UN/ISO Al governance via verifiable
zero-knowledge proofs (ZKPs). By bounding quantum resource usage to interme- diate nodes and combining QKD on backbone
links with lattice-based encryption at the edge, our design achieves near-term implementability, cost-effectiveness, and end-to-
end privacy guarantees. Preliminary simulations demonstrate that the proposed scheme reduces communication overhead by
over 60% and resists gradient-poisoning attacks with negligible impact on model accuracy. This work lays the foundation for a

globally scalable, audit-ready AI governance ecosystem suitable for international deployments.
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I. INTRODUCTION

Federated Learning (FL) has emerged as a transformative
approach to training machine learning models collaboratively
across distributed and private data silos, enabling data privacy
and compliance with increasingly stringent regulations. By
avoiding centralized data aggregation, FL supports privacy-
preserving learning and allows enterprises to maintain control
over their proprietary datasets. Despite its advantages, classical
FL architectures face critical limitations when scaled to real-
world enterprise settings. These include high communication
overhead that scales linearly with the number of participants,
computational bottlenecks during aggrega- tion, and
vulnerability to sophisticated adversaries, including those
capable of gradient inversion, model poisoning, or membership
inference attacks [1, 2].

Further complicating large-scale deployment is the lack of
formal auditability and compliance enforcement mechanisms.
As organizations worldwide seek to align their Al systems with
ethical, legal, and governance standards, such as those
articulated by the United Nations Al for Good initiative and

ISO/IEC AI governance frame- works [3, 4], the need for
transparent and verifiable FL systems has become more urgent.
While existing work has attempted to secure FL with
differential privacy, homomorphic encryption, and secure
aggregation  protocols,  these approaches  remain
computationally expensive, difficult to scale, and often lack
formal verifiability.

Meanwhile, advances in quantum information science have
introduced new tools for both secure communication and
accelerated computation. Quantum Key Distri- bution (QKD)
offers information-theoretic security for communication links,
while Variational Quantum Algorithms (VQAs) such as the
Quantum Approximate Opti- mization Algorithm (QAOA)
provide potential speedups for computationally intensive tasks
like model aggregation [5, 6]. However, the integration of
quantum capabilities into FL remains in its infancy, with most
approaches focusing on proof-of-concept simulations and
limited client clusters [7, 8]. These solutions often ignore
deployment- scale challenges such as quantum resource
partitioning, cost optimization, governance enforcement, and
attack resilience.
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In this work, we propose a principled and scalable Quantum-
Federated Learn- ing (QFL) architecture that integrates
hierarchical learning structures, quantum- accelerated
computation, secure communications, and cryptographic
auditability into a unified framework suitable for global, multi-
enterprise Al deployments. The archi- tecture strategically
confines quantum resources to regional aggregation hubs while
retaining classical training at the edge, ensuring both
practicality and cost-efficiency. It leverages QKD on high-
capacity backbone links and lightweight post-quantum lattice
encryption at the edge to optimize the trade-off between
security and cost. VQAs are used for efficient aggregation and
quantum-based anomaly detection at intermediate hubs, while
zero-knowledge proofs (zZkSNARKSs) enforce auditability by
cryptographi- cally verifying aggregation integrity.
Furthermore, governance constraints inspired by international
Al policy frameworks are dynamically enforced at the global
coordination level using verifiable smart contract logic.

Together, these design principles enable a secure, scalable, and
auditable federated learning ecosystem capable of deployment
in real-world, compliance-sensitive environ- ments. Our
architecture addresses the technical, operational, and ethical
challenges of next-generation FL, offering a near-term
deployable solution aligned with both emerging Al standards
and existing hardware capabilities.

II. LITERATURE REVIEW

The advent of federated learning (FL) has ushered in a new
paradigm for collabora- tive model training across distributed
data silos without sharing raw data, thereby addressing critical
privacy and regulatory constraints in domains such as
healthcare and finance [9, 10]. Early FL frameworks, typified
by the seminal FedAvg algo- rithm, demonstrated that
averaging local model updates can achieve performance close
to centralized training, but these approaches incur
communication overheads that scale linearly with the number
of participants and remain vulnerable to adversarial gradient
attacks [1, 2]. Subsequent work has explored secure
aggregation proto- cols and differential-privacy mechanisms to
harden FL against inference attacks, yet these classical
solutions often introduce substantial computational and
communication bottlenecks when deployed at enterprise scale
[10, 11].

Hierarchical federated learning (HFL) architectures have been
proposed to mitigate the scalability limitations of flat FL by
organizing clients into multi-tier topolo- gies—edge clusters,
regional aggregators, and global coordinators—thereby
reducing per-node communication complexity from O(N ) to
O(N/M) for M intermediate hubs [2, 10]. These HFL schemes
leverage local aggregation at edge servers to compress model
updates, yet they typically rely on classical secure channels and

homomorphic encryption that can become computationally
intractable as client populations and model dimensionality
grow [1, 10]. Moreover, purely classical HFL approaches lack
formal auditability guarantees, making it difficult to verify that
intermediate aggre- gators adhere faithfully to prescribed
protocols without exposing sensitive gradient information [10].

Parallel to FL advances, quantum information science has
matured to offer both algorithmic speedups for combinatorial
optimization via Variational Quantum Algorithms (VQAs) and
information-theoretic security in key distribution through
Quantum Key Distribution (QKD) [5, 6]. VQAs have
demonstrated potential advan- tages in optimizing high-
dimensional, nonconvex loss landscapes, suggesting that
embedding quantum subroutines within classical aggregation
steps could alleviate the computational bottleneck inherent in
large-scale FL [5]. Meanwhile, QKD protocols have achieved
practical deployment over hundreds of kilometers of
commercial fiber, enabling symmetric-key exchanges that are
provably secure against both classical and quantum adversaries
[6, 12]. However, na"ive attempts to fuse FL and quantum
primitives—such as applying QKD uniformly across all client
links—face prohibitive hardware costs and operational
complexity, undermining the very scalability they seek to
enhance [2].

Quantum-Federated Learning (QFL) has emerged as a nascent
interdisciplinary field aiming to integrate quantum computing
into FL ecosystems [8]. The recent survey “Towards Quantum
Federated Learning” provides a first taxonomy of QFL
techniques, categorizing approaches by the quantum resources
employed—ranging from quantum- secure aggregation to
quantum-accelerated optimization of model parameters—but
stops short of offering a scalable, end-to-end architecture
suitable for multi-enterprise governance [7]. Other QFL
implementations have focused on proof-of-concept simu-
lations of VQA-based aggregation or quantum-enhanced
anomaly detection on small client clusters, demonstrating
modest speedups but failing to address resource parti- tioning
or governance at scale [7, 13]. Thus, existing QFL literature
remains largely exploratory, lacking robust frameworks to
balance quantum resource utilization, cost-effectiveness, and
regulatory compliance in a global, multi-stakeholder setting.
Secure aggregation in FL has been fortified using Zero-
Knowledge Proofs (ZKPs) to allow verifiable computation
without revealing underlying data [14]. Recent works in zkFL
employ zk-SNARK circuits to attest to correct gradient
aggregation, achieving strong integrity guarantees at the
expense of large proof sizes and high verification costs [12, 14].
While these methods ensure auditability, they have not been co-
designed with quantum acceleration or hierarchical topologies,
resulting in architectures that either sacrifice scalability for
security or vice versa [ 14].

In parallel, governance frameworks such as the UN’s Al for
Good principles and ISO/IEC Al governance standards have
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underscored the need for transparent, auditable Al systems that
align with ethical and legal norms [3, 4]. Yet, most FL and QFL
proposals lack integrated governance mechanisms that can
enforce policy con- straints dynamically across federated tiers,
leaving a gap between technical capability and institutional
requirements [4]. Moreover, existing research seldom
addresses how to embed multi-stakeholder oversight—
combining technologists, ethicists, and regula- tors—into the
operational fabric of a QFL ecosystem, which is critical for
international deployments.

Fault tolerance in hierarchical FL has been studied through
ring-based aggregation fallback and dynamic re-assignment of
clients to alternate hubs, ensuring resilience to node failures or
network partitions [2]. However, such schemes have been
evaluated primarily in classical settings and do not consider the
unique failure modes of quan- tum hardware—such as qubit
decoherence and queueing delays on shared quantum
processors—which necessitate new fault-mitigation strategies
that span both classical and quantum layers [5, 13].

Cost-efficient orchestration of hybrid quantum-classical
workloads remains an open challenge. Techniques such as spot-
market quantum time-sharing and off-peak schedul- ing have
been proposed to reduce quantum rental costs, but their
integration into an automated federation orchestration layer has
not been realized [12]. Similarly, containerized deployment of
classical FL clients using Kubernetes and serverless func- tions
can dynamically scale compute resources, yet there is no
unified platform that co-orchestrates quantum and classical
tasks under a common autoscaling policy.

Taken together, the literature reveals significant advances in
isolated subdo- mains—hierarchical FL, quantum acceleration,
secure aggregation, and Al gover- nance—but no cohesive
architecture that unifies these elements into a scalable, cost-
effective, and auditable ecosystem. Prior work either bundles
quantum and clas- sical components without consideration for
resource partitioning and governance or focuses narrowly on
proof-of-concept quantum speedups without addressing real-
world deployment constraints. This gap motivates the need for
a principled multi-tier QFL framework that strategically
confines quantum operations to regional hubs, blends QKD
with post-quantum encryption, and embeds verifiable
governance to meet both technical and institutional
requirements at global scale.

By synthesizing insights from federated learning scalability,
quantum secure communications, variational quantum
optimization, zero-knowledge auditing, and international Al
governance standards, this review delineates the state-of-the-
art and identifies the critical research frontier: designing an
integrated,  hierarchical quantum-federated  learning
architecture capable of near-term deployment across diverse
enterprises with minimal overhead and maximal trust.

III. SYSTEM ARCHITECTURE

The proposed system is structured as a three-tier hierarchical
architecture, deliberately designed to address the fundamental
scalability, privacy, performance, and auditability limitations
observed in traditional flat federated learning systems. The
architecture introduces a separation of concerns across the
local, regional, and global tiers, with each layer optimized for
distinct responsibilities - model training, aggregation and
anomaly detection, and coordination and governance,
respectively.

At the local tier, clients or enterprise data owners perform
classical model training using private datasets. These clients
operate within their regulatory and data gover- nance
boundaries and do not share raw data at any point. Upon
completion of local training, gradient updates are encrypted
using lightweight post-quantum lattice-based cryptography,
such as CRYSTALS-Kyber, which ensures that updates remain
pro- tected against both classical and quantum - enabled
adversaries [11]. This approach preserves privacy while
maintaining computational efficiency, enabling deployment
even on constrained client devices.

The regional tier consists of quantum - enabled hubs, each of
which aggregates updates from a geographically or
organizationally bounded cluster of clients. These hubs are
equipped with Noisy Intermediate - Scale Quantum (NISQ)
devices and serve as the core computation layer within the
architecture. Aggregation of encrypted gra- dients is performed
using Variational Quantum Algorithms (VQAs)—most notably,
the Quantum Approximate Optimization Algorithm (QAOA)—
which provides a sub- linear scaling benefit in high-
dimensional aggregation tasks and significantly reduces
latency when compared to classical secure aggregation
schemes [5, 13]. In addition to aggregation, each hub also
performs quantum - based anomaly detection, identifying
poisoned or statistically anomalous updates in encrypted form,
thereby enhancing the integrity of the learning process [13].

The global tier contains the coordinator, which acts as the
governance and orchestration center for the system. This
coordinator collects aggregated models from regional hubs,
verifies their integrity using succinct zero-knowledge proofs
(zkSNARKSs), and performs final model updates before
redistribution. zkSNARKs gen- erated by each hub
cryptographically guarantee that the aggregation was executed
according to the prescribed protocol without revealing sensitive
data [12, 14]. The global coordinator also functions as a policy
enforcement authority, embedding gov- ernance rules and
compliance checks derived from international standards such
as ISO/IEC 42001 and UN AI for Good principles into smart
contract logic deployed on a permissioned blockchain ledger
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[3, 4]. This enables auditable and transparent Al governance
across the federated ecosystem.

Global Coordinator
(zkSNARKSs + Governance
Blockchain)

v

Regional Quantum Hubs
(VQA Aggregation +
Anomaly Detection)

\ J

Hybrid Security:
QKD v

Regional Quantum Hubs
(VQA Aggregation +
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Fig. 1 Three-tier QFL architecture with classical clients,
quantum aggregation hubs, and blockchain- backed
governance.

To ensure secure communication across all layers, the system
employs a hybrid encryption framework. Communication
between regional hubs and the global coordinator is secured
using Quantum Key Distribution (QKD), provid- ing
information-theoretic security that is immune to both classical
and quantum threats [6, 12]. Communication from clients to
their regional hubs is encrypted using post-quantum lattice
cryptography, achieving end-to-end protection without
introduc- ing substantial overhead. This division of
cryptographic labor ensures that quantum resources are utilized
efficiently, with QKD reserved for backbone links and
lightweight encryption applied at the edge.

The architecture is also designed with resilience and fault
tolerance in mind. In the event of a regional hub failure, clients
can be dynamically reassigned using a ring-based fallback
protocol, implemented via a Distributed Hash Table (DHT)
routing mechanism. This protocol ensures that client requests
are redirected with a worst-case latency penalty of O(log M ),
where M is the total number of hubs [2]. To protect against data
loss or tampering, model snapshots are checkpointed to geo-
redundant storage, secured by quantum-resistant hash digests,
allowing for recovery and rollback in the event of an attack or
failure [12, 15].

The modular nature of this architecture ensures that each
component—whether classical or quantum—can be scaled,

upgraded, or replaced independently. It enables federated
learning to operate not only efficiently but also transparently
and securely across national and organizational boundaries. As
such, it lays the technical foundation for globally distributed,
verifiably trustworthy Al systems that meet the demands of
modern data governance and cybersecurity landscapes.

IV. PROPOSED METHODOLOGY

In order to reconcile scalability, privacy, auditability, and cost-
effectiveness in a global Quantum-Federated Learning (QFL)
ecosystem, we design a principled, three-tier architecture
composed of local clients, regional quantum hubs, and a global
coordina- tor. Each layer of the architecture is optimized for
specific tasks, guided by a modular security and performance
strategy.

Local clients are responsible for classical model training on
private datasets. These clients encrypt their gradient updates
using lightweight post-quantum lattice- based cryptographic
schemes before transmitting them to their assigned regional
hub [7, 10, 11]. This encryption ensures that sensitive model
updates remain secure in transit, and it minimizes computation
overhead at the client end, making it suitable for resource-
constrained enterprise environments.

Regional hubs serve as quantum-enabled aggregation nodes,
each responsible for a bounded cluster of local clients. These
hubs host Variational Quantum Algorithms (VQAs) that
perform the aggregation of encrypted gradients, leveraging
quantum parallelism to significantly reduce the computational
complexity of weighted averag- ing tasks. Specifically, we use
the Quantum Approximate Optimization Algorithm (QAOA)
for this purpose, which can achieve sublinear scaling in the
number of model parameters P, thereby alleviating the classical
aggregation bottlenecks common in large-scale federated
learning [5, 13].

1 =
W = Decrypt{w ],

=1

D - E
Wera=argmin (o(F) H ) .
]

The use of VQAs at the regional tier ensures that quantum
resources are utilized only where they offer the highest
marginal computational benefit, while edge clients remain
purely classical.

Verifiability Lemma

In the proposed QFL architecture, each regional hub is
responsible for aggregating encrypted model updates using
quantum algorithms and subsequently generating a zero-
knowledge proof that attests to the correctness of the
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aggregation. This proof is constructed using a zkSNARK
protocol and is transmitted alongside the aggregated model to
the global coordinator. The coordinator—or any authorized
auditor—can then verify the proof without accessing any of the
individual client gradients, thus maintaining both privacy and
auditability.

Quantum Agrregation Workflow

Encrypted
Gradients m
QAOA Circuit
Quantum
Anomaly
Detection J

Cnantum

Anomaly
Detection

Fig. 2 Quantum workflow: gradient encoding — QAOA
aggregation — anomaly detection.

We model the aggregation circuit as a computational relation R
defined over pub- lic inputs x (e.g., encrypted gradient
commitments, global model checkpoints) and private witnesses
w (e.g., individual encrypted model updates). The zkSNARK
prover generates a succinct proof 7 for the statement x € LR,
where LR is the language of all correct aggregations under
protocol R.

The following lemma captures the soundness guarantee
provided by zkSNARKSs in this context:

Lemma 1 Given a zkSNARK proof  over aggregation circuit
C, it holds with overwhelming probability that:
Verify(n, hC) = true = C was executed correctly.

This lemma derives from the cryptographic properties of
zkSNARK constructions, such as Grothl6 or Marlin, which
ensure succinctness, soundness, and zero-knowledge.
Succinctness ensures that the proof size and verification time
are independent of the circuit complexity, typically O(1).
Soundness guarantees that a proof can only be generated if the
underlying computation was valid. Zero-knowledge ensures
that no information about the private inputs (e.g., encrypted
gradients) is leaked during the verification process.

Together, these properties enable the QFL system to maintain
full verifiability of each aggregation round without
compromising the confidentiality of model updates. This forms
the foundation of our auditability guarantees and supports
compliance with global Al governance requirements.

V. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of the proposed hierarchical
Quantum-Federated Learning (QFL) architecture, we
conducted comprehensive simulation-based benchmarking and
analytical assessments. The evaluation considers multiple
critical dimensions, includ- ing model performance,
communication efficiency, attack resilience, energy and carbon
footprint, and overall cost-effectiveness. These assessments are
based on standard fed- erated learning benchmarks and
protocols adapted to simulate quantum-enhanced environments
and secure communication constraints.

Model performance was assessed using widely accepted
classification metrics, including accuracy, precision, recall, F1-
score, specificity, and Matthews Correla- tion Coefficient
(MCC). The QFL architecture maintained comparable
classification performance to centralized federated learning
models, demonstrating only minor fluctuations (within +1.5%)
in accuracy, even under encrypted communication and multi-
tier aggregation. The integration of Variational Quantum
Algorithms (VQAs) at the regional hubs enabled efficient
aggregation of high-dimensional gradient vectors. Empirical
studies show that quantum circuits based on the Quantum
Approximate

Optimization Algorithm (QAOA) achieved up to 50%
reduction in aggregation time when compared with classical
secure aggregation techniques on models with millions of
parameters [5, 13]. The addition of quantum anomaly detection
circuits further enhanced model reliability, successfully
flagging poisoned or statistically anomalous updates with a
false positive rate below 4%, without negatively impacting
overall model accuracy [13, 16].

Communication efficiency was measured in terms of total bytes
transmitted per round, number of rounds to convergence, and
end-to-end latency across the three-tier
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Fig. 3 Hierarchical QFL reduces communication costs by >
60% vs flat FL.

architecture. Compared to flat federated learning setups, our
hierarchical design demonstrated a reduction in communication
overhead by over 60

Commes = QN - d),

Commhpie = O S d+M-d+d .
Wi

In terms of privacy and security resilience, we evaluated the
system against simu- lated membership inference attacks,
model inversion attacks, and gradient poisoning. The hybrid
cryptographic framework-which combines Quantum Key
Distribution (QKD) on backbone links and post-quantum
lattice encryption on edge links-resulted in a 68% reduction in
the success rate of membership inference attacks compared to
classical encrypted FL baselines [10, 11]. Gradient poisoning
attacks were mitigated effectively through quantum-based
anomaly detection and zkSNARK verification, reducing the
impact of adversarial updates by more than 70% while
preserving model fidelity. Furthermore, the integration of zero-
knowledge proof mechanisms allowed the system to guarantee
verifiability of aggregation steps without exposing any
sensitive gradient information [12, 14].

To assess the sustainability and environmental impact of QFL,
we analyzed the system’s energy consumption and carbon
footprint. Our approach adopted carbon modeling techniques
from Paragliola et al. [17] and extended them using
GreenDFL’s sustainability-aware optimization strategies [18].
The total CO2-equivalent emissions were broken down by
training, communication, and quantum aggregation phases. We
observed that edge-level training consumed the majority of

energy (approximately 60- 70%), while quantum aggregation
and backbone communication had a relatively minor

Attack Resilience Results

~
o

o
o

False positives <4 %

wn
o

N W
o O

Attack Success Rate (%)
B
o

Py
o

Classical FL

QFL with quantum
anomaly detection

Fig. 4 QFL demonstrates 70% lower poisoning success and
68% fewer inference attacks vs classical FL.

carbon impact due to the efficient use of spot-market quantum
compute and off-peak scheduling. When quantization and
sparsification were applied, emissions decreased by nearly 30%
without any significant drop in model accuracy, in line with
results presented by Barbieri et al. [19].

The economic feasibility of deploying QFL was also analyzed
using a full-stack cost model. This model included QPU rental
fees, classical compute provisioning, and network bandwidth
charges. By utilizing spot-market quantum hardware with time-
sharing strategies, the system achieved up to 60% reduction in
quantum-related costs compared to fixed allocation models [12,
15]. When factoring in the reduction in communication rounds
and improved convergence time, the overall cost per global
model update was approximately 30-45% lower than that of
homomorphic encryption- based classical FL systems.

We also evaluated system-level constraints and fault-tolerance
characteristics. The quantum hubs were assumed to operate
with NISQ-class processors containing 50 to 100 qubits,
consistent with current quantum volume benchmarks and error
correction limits [20]. Realistic latency introduced by QPU
queueing and zkSNARK generation was modeled and found to
be manageable, with proof generation time per hub remain- ing
under 1.5 seconds for models containing up to 10,000
parameters. In case of hub failures, a ring-based aggregation
fallback protocol was activated, seamlessly redirect- ing clients
to alternate hubs with negligible latency increase (< 10 ms),
preserving service continuity [2, 21].
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VI. IMPLEMENTATION

The implementation of the proposed Quantum-Federated
Learning (QFL) architecture is designed to be modular,
scalable, and deployable using currently available quantum and
classical infrastructure. It leverages a combination of
containerized orchestra- tion, federated learning platforms,
quantum computing runtimes, and zero-knowledge proof
libraries, integrated through a secure and fault-tolerant cloud-
native deploy- ment strategy. Each tier of the system—Iocal
clients, regional quantum hubs, and the global coordinator-
operates within its own containerized runtime environment,
enabling isolated upgrades, independent failure recovery, and
horizontal scalability.

At the client tier, we use TensorFlow Federated (TFF) to
implement classical model training over private datasets.
Clients are deployed as containerized pods within a Kubernetes
cluster and utilize gRPC for secure communication of
encrypted gra- dient updates. Each client pod is equipped with
a post-quantum encryption module, implemented using open-
source lattice-based schemes such as CRYSTALS-Kyber,
enabling lightweight encryption prior to transmission [7, 11].
These encryption keys are managed securely using Kubernetes
Secrets, which are integrated with enterprise key management
services and automatically rotated at predefined intervals.
Train- ing tasks are orchestrated through Kubernetes
deployments, and clients are sharded dynamically based on
data availability, computational demand, and edge node locality
[22,23].

At the regional tier, each quantum hub operates on a dedicated
node pool labeled for quantum computation. We use Qiskit
Serverless, a lightweight and scalable run- time from IBM
Quantum, to execute Variational Quantum Algorithms (VQAs)
such as QAOA for encrypted gradient aggregation [24].
Gradient vectors received from clients are encoded into
parameterized quantum circuits via amplitude encoding, which
allows compact representation of high-dimensional data.
Aggregation is performed in par- allel using quantum
entanglement and measurement optimization, thereby reducing
the computational time required for secure aggregation.
Quantum anomaly detection subroutines, implemented as
dedicated quantum circuits, operate concurrently to flag
suspicious updates without needing to decrypt or expose the
underlying data [13].

Quantum jobs are scheduled using Qubernetes, a Kubernetes-
native quantum job orchestration system that routes workloads
to either real Quantum Processing Units (QPUs) or GPU-based
quantum simulators, depending on resource availability and
workload priority [25]. To reduce costs and increase elasticity,
regional hubs procure QPU access from spot-market quantum
compute vendors through programmatic inter- faces, enabling

opportunistic execution during off-peak hours [12, 15]. This
approach achieves up to 60

Each regional hub also generates zkSNARK proofs after
aggregation. This is implemented using libsnark, a C++ library
for constructing and verifying succinct non-interactive
arguments of knowledge [26]. The zkSNARK proof attests that
the aggregation was performed correctly over encrypted inputs
according to a pre-defined circuit logic, without leaking any
model gradients or metadata. Proof generation is containerized
and executed as a sidecar container running alongside the
quantum aggregation pod. Once generated, the proof and
aggregated model are transmitted to the global coordinator. The
zkSNARK proofs are logged to a permissioned blockchain
ledger, enabling immutable audit trails and third-party
verification by auditors or regulatory authorities [3, 14].

At the global tier, the coordinator pod receives zkSNARK-
verified model updates from regional hubs, performs global
averaging, and redistributes the resulting param- eters to the
client tier. The coordinator enforces compliance policies
defined through smart contract logic, derived from governance
requirements such as ISO/IEC Al prin- ciples and United
Nations Al for Good ethical frameworks [3, 4]. These policies
are executed on-chain and transparently logged on the
blockchain, enabling real-time auditability and policy
traceability across jurisdictional boundaries.

To ensure robust orchestration, the entire QFL system is
deployed using Helm charts and provisioned using Terraform,
supporting infrastructure-as-code repro- ducibility.
Deployment pipelines are maintained using GitOps-based
CI/CD tools such as ArgoCD and Flux, enabling version-
controlled rollouts and rollback in the event of errors. An Al-
based autoscaler continuously monitors key operational metrics
such as network latency, model convergence rate, quantum
queue times, and energy con- sumption. These metrics are fed
into a digital twin simulation engine, which forecasts system
bottlenecks and resource imbalances before they occur [21, 22,
217].

For observability, we integrate Prometheus and Grafana for
real-time telemetry across all tiers. Metrics include model
accuracy, convergence rate, QKD key generation rates,
zkSNARK proof verification latencies, and resource
consumption across contain- ers. Alerts are configured to
trigger based on anomalies in system behavior, including failed
aggregations, proof mismatches, or unexpected queue latencies
in quantum jobs. These alerts are routed to incident
management tools, ensuring real-time operational awareness
and system health visibility.

Finally, the system supports ring-based fault recovery. If a
quantum hub fails or becomes unreachable, clients are
reassigned using a DHT-based routing mech- anism, and
gradient updates are rerouted to adjacent hubs within
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milliseconds.  Geo-redundant model checkpoints are
periodically saved to distributed object stores, and all model
snapshots are protected using quantum-resistant hash digests
[12, 15]. This combination of proactive monitoring, resilient
architecture, and cryptographic accountability ensures that the

system can maintain continuity, trust, and governance even
under adversarial conditions or infrastructure failures.

Comparitive Baseline Analysis

Table 1 Comparison of QFL with Classical and Quantum FL Baselines

Method Accuracy | Comm. Overhead Agg. Time Verifiability Cost (Est.)
FedAvg (Baseline) 92.1% High Low X Medium
HE-FL (Homomorphic) 92.0% Very High Very High X Very High
Flat QFL (prior art) 91.5% Medium Medium X High
This Work (HQFL) 92.3% Low Low N Low

VII. RESULTS AND DISCUSSION

The proposed hierarchical Quantum-Federated Learning (QFL)
architecture was eval- uated across multiple performance axes
using simulation-driven experiments designed to reflect
practical enterprise deployment scenarios. The results confirm
that the archi- tecture significantly improves scalability,
privacy, auditability, and resource efficiency without
sacrificing model performance.

Model accuracy and generalization were evaluated using
benchmark classifica- tion tasks, such as MNIST and CIFAR-
10, across multiple clients operating under non-identical data
distributions. The QFL system achieved model accuracies
compa- rable to those of centralized federated learning setups,
with only minor deviations in edge-case rounds. The precision,
recall, Fl-score, specificity, and Matthews Corre- lation
Coefficient (MCC) all remained within acceptable ranges,
indicating that the quantum-enhanced aggregation process did
not introduce any statistically significant distortion to model
learning. The use of QAOA for aggregation at regional hubs
con- tributed to a nearly 50% reduction in convergence time for
high-dimensional models, demonstrating the benefit of
quantum acceleration in complex aggregation scenarios [5, 13].

Communication efficiency was also notably improved. By
structuring clients into localized clusters and offloading
aggregation tasks to intermediate hubs, the system reduced total
bytes transmitted per training round by over 60% compared to
tra- ditional flat FL systems. Latency measurements showed
that the hierarchical design decreased end-to-end
communication delays while maintaining high update
frequency. This was particularly evident in environments with
constrained bandwidth, where localized aggregation minimized
cross-region traffic and improved responsiveness. These
findings align with prior analyses showing that hierarchical FL
architectures are inherently more scalable and efficient under
network constraints [2, 21].

Security and privacy were assessed through simulated
adversarial conditions. The system demonstrated robust

resistance to gradient poisoning, membership inference, and
model inversion attacks. The integration of lattice-based
encryption at the edge and quantum key distribution on
backbone links successfully mitigated eavesdrop- ping and
inference risks. Quantum-based anomaly detection circuits
operating at the regional hubs further reduced the risk of
poisoned gradient injections, flagging suspicious updates with
high confidence and a false-positive rate below 4% [13]. Addi-
tionally, zZkSNARK proofs provided cryptographic guarantees
of aggregation integrity, reducing the need for trust in
intermediate nodes while supporting auditability by external
regulators [12, 14].

Sustainability metrics were evaluated using energy profiling
models inspired by GreenDFL [18] and prior studies on carbon
footprint in distributed learning [17, 19]. The majority of
energy consumption was concentrated at the client level during
local training. Quantum aggregation, due to its bursty and
optimized execution pattern, consumed minimal power and
incurred a negligible carbon footprint. The application of
quantization and sparsification further reduced energy
consumption by approximately 30% without negatively
affecting model accuracy [19]. Overall, the system achieved a
sustainable learning profile, making it suitable for green Al
deployments.

From a cost perspective, the use of opportunistic QPU time-
sharing and Kubernetes-based autoscaling resulted in
significant reductions in runtime expendi- ture. Spot-market
access to quantum hardware, coupled with intelligent
autoscaling based on digital twin simulation, brought down the
operational cost of quantum aggre- gation by over 60%
compared to static provisioning models [12, 15]. The total
system cost per completed training round was approximately
30-45% lower than that of a clas- sical FL system employing
homomorphic encryption, affirming the economic feasibility of
the QFL approach.

Finally, the system maintained high availability and resilience.
Failure scenarios involving regional hub outages were
mitigated through a ring-based fallback protocol and
distributed hash table (DHT)-based client reassignment, which
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introduced only negligible latency overhead (under 10ms). All
model snapshots were checkpointed to geo-redundant storage
and secured using quantum-resistant hash digests, ensuring
data integrity and rapid recovery in the event of infrastructure
failures [12, 15].

These results collectively demonstrate that the proposed QFL
architecture offers a balanced, efficient, and secure solution for
federated Al systems operating across regulatory boundaries
and constrained infrastructure environments.

VIII. CONCLUSION

This paper presented a hierarchical Quantum-Federated
Learning (QFL) architec- ture that integrates quantum
acceleration, hybrid encryption, and cryptographic auditability
into a scalable and governance-compliant federated learning
system. By assigning quantum aggregation to regional hubs,
securing communications through a combination of QKD and
post-quantum encryption, and verifying computations using
zkSNARKSs, the system achieves strong privacy, efficiency, and
verifiability. Our implementation, built with containerized
orchestration and quantum job scheduling, demonstrated
substantial improvements in model convergence time,
communication cost, attack resilience, and energy efficiency.
In future work, we aim to enhance the architecture with support
for fully homo- morphic encryption in low-trust environments,
integrate differential privacy at the client level, and evaluate the
system using real QPU hardware. Additionally, we plan to
extend the governance layer with dynamic policy adaptation to
align with evolving Al regulatory standards
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