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Abstract- The rapid integration of electric vehicle (EV) fast charging stations in DC micro-grids has introduced significant power
quality challenges, particularly harmonic current distortion at the point of common coupling (PCC). In this study, a DC
microgrid integrating photovoltaic (PV) generation, battery energy storage systems (BESS), and a Level-3 EV fast charging
station was modeled in MATLAB/Simulink to examine the effect of harmonic distortion and evaluate mitigation using an
Artificial Neural Network (ANN)-controlled Static Synchronous Compensator (STATCOM). Base case simulation results
revealed that the EV fast charging station injected excessive harmonic distortion into the network, with dominant odd harmonics
at the 11th and 13th orders, leading to a total harmonic distortion (THD) of 14.05%. This value significantly exceeds the IEEE
519-2022 standard limit of 8% for medium-voltage systems. Following the installation of an ANN-tuned STATCOM at the PCC,
the harmonic distortion was substantially mitigated, reducing the 11th and 13th orders to 0.01% and 0.15% respectively.
Consequently, the total harmonic distortion was minimized to 1.23%, achieving a 91.24% reduction and ensuring full compliance
with IEEE standards. Furthermore, the ANN controller demonstrated excellent training performance with a best validation
mean square error of 0.0034611 at epoch 20 and a regression correlation coefficient of R = 0.9879, validating its accuracy and

robustness. These findings confirm that ANN-controlled STATCOM provides an effective and intelligent solution for enhancing

power quality and system stability in DC micro-grids with EV fast charging integration.
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I. INTRODUCTION

Recent technological advances and the anticipated economic
and environmental benefits of electrified transport have
significantly accelerated the adoption of electric vehicles
(EVs). According to the International Energy Agency (IEA),
the global EV fleet is projected to reach nearly 250 million by
2030. This trend, while promising for sustainable development,
poses major challenges for existing power systems, especially
in the context of EV charging infrastructure. Traditional EV
charging units Level 1 and Level 2 require between 4 to 16
hours to fully charge a battery, making them impractical for
scenarios requiring fast turnaround. To address this limitation,
Level-3 DC fast charging units have emerged, capable of
charging an EV in less than 30 minutes. However, the
deployment of EV fast charging stations (EVCS) introduces
significant technical concerns. These units impose high
instantaneous power demand, which can stress the distribution
network, increase carbon emissions when powered from
conventional grids, and contribute to voltage fluctuations,
harmonic distortion, and power losses. The situation is even
more critical at the residential and community distribution

level, where such chargers are directly connected to relatively
weak networks. To mitigate these impacts, DC micro-grids
integrating renewable energy sources (RES) and energy storage
systems (ESS) have gained attention as a viable solution for
supporting EV fast charging. Yet, the dynamic and nonlinear
characteristics of EVCS still pose power quality and energy
management challenges. Flexible AC Transmission System
(FACTS) devices, particularly the Static Synchronous
Compensator (STATCOM)), are effective in regulating voltage,
providing reactive power support, and improving power
quality. Nevertheless, the effectiveness of STATCOM depends
on its control strategy. Conventional proportional—integral (PI)
controllers are limited under rapidly varying load and
renewable conditions.

Artificial Neural Network (ANN)-based control presents a
promising alternative due to its adaptive and data-driven
capabilities. ANN-controlled STATCOMs can enhance
microgrid stability, reduce harmonic distortion, and ensure
optimal energy management under the complex and nonlinear
dynamics of EV fast charging. This motivates the need to
explore ANN-based STATCOM control for advanced energy
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management and power quality enhancement in DC micro-
grids with EV fast charging integration.

The increasing penetration of distributed generation (DG) and
electric vehicle (EV) fast charging in modern grids has created
complex challenges in stability, control, and power quality
management. Various control strategies and compensation
devices have been proposed in the literature to address these
challenges. Electrical power systems are designed to provide
consistent and reliable voltage to end users. Accurately
predicting future energy demand is crucial for effective
planning of power generation, distribution, and infrastructure
development to meet the anticipated needs of the community
(Ijeoma and Odu, 2025a). Electricity can be generated in
various types of power plants, including thermal, hydroelectric,
and nuclear facilities. Once generated, the electricity is
supplied to a transmission substation located near the power
plant. At this substation, the voltage is significantly increased
using step-up transformers. This increase in voltage helps to
minimize transmission losses over long distances (Ijeoma and
Olisa, 2019).

Mwasilu and Ojo (2024) highlight the limitations of voltage-
sourced converters (VSCs) in grid-connected DG systems,
particularly their interaction with LCL filters, which can trigger
resonance issues and compromise stability. Their proposed
robust multi-input multi-output (R-MIMO) controller mitigates
high-frequency switching harmonics and improves reliability
without the need for additional damping mechanisms. This
advancement emphasizes the importance of intelligent control
strategies for stability under diverse operating conditions.

Shravani et al. (2023) investigate the mitigation of harmonics
generated by nonlinear loads. Their study demonstrates the
effectiveness of active power conditioners, such as Shunt
Active Power Filters (SAPFs) and Unified Power Quality
Conditioners (UPQCs), especially when combined with
renewable energy sources. While simulations confirm the
benefits, the study highlights the gap in real-world
implementation, pointing to the need for robust controllers that
adapt to dynamic grid conditions.

Altin et al. (2023) propose a multi-agent control system for DC
micro-grids integrating photovoltaics, wind, storage, and
synchronous generation. Their results confirm the ability of
multi-agent frameworks to stabilize DC bus voltage and ensure
effective energy management. However, their scope remains
limited to a few operational scenarios, leaving open questions
about scalability and adaptability in EV-integrated DC micro-
grids.

Bianchi and Medici (2017) explore Proportional-Integral-
Derivative (PID) controllers in DG systems, noting their
simplicity and effectiveness in stable environments but also
their weaknesses in highly nonlinear, dynamic systems such as

those influenced by EV fast charging. Tuan and Wang (2018)
advance this discussion by demonstrating that fuzzy logic
control (FLC) can handle uncertainty in renewable-based DG
systems, although rule construction becomes increasingly
complex for larger networks. Just as the continuous flow of
blood is essential for human survival, a stable and reliable
supply of electricity is fundamental to national development.
Without electricity, no city or nation can thrive (Fubara and
[jeoma, 2019). Innovative energy practices and solutions offer
a clear pathway to uplifting communities worldwide. By
prioritizing localized energy systems, adopting renewable
technologies, enhancing energy efficiency, and fostering
inclusive policies, we can create a world where energy access
is not a privilege but a fundamental right (Ijeoma, 2025¢).

Zhao and Xu (2019) show that Model Predictive Control
(MPC) optimizes power dispatch in hybrid DG systems by
predicting future states, though its computational burden
remains a barrier for real-time EV applications. Similarly, Pan
and Wang (2018) emphasize the effectiveness of adaptive
control in handling time-varying dynamics, but note
implementation challenges in large-scale systems.

Liu and Li (2019) complement this with the use of Sliding
Mode Control (SMC), which demonstrates robustness to
disturbances but introduces chattering effects that can limit
practical deployment.

Huang and Tang (2017) employ Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO) to optimize renewable
integration, while Mir Nahidul Ambia et al. (2015) apply
Harmony Search Algorithm (HSA) to improve controller
performance. Both approaches highlight strong adaptability but
face computational challenges and limited real-world
validation.

Zhou and Yu (2020) present hybrid control strategies, such as
FLC-PID or MPC combinations, to balance multiple objectives
in DG systems, while Zhou and Zhang (2020) explore VSC-
based voltage and reactive power control for stable renewable
integration.

Zhang and Wang (2019) further extend this by proposing
Unified Power Quality Conditioners (UPQCs) to tackle
multiple power quality issues simultaneously, though their high
cost and complexity limit scalability.

Razmi and Lu (2022) provide a comprehensive review of
Model Predictive Control in microgrid applications, stressing
the importance of hierarchical strategies for distributed energy
resource management but identifying gaps in real-world
validation.

Hong et al. (2019) contribute to this by introducing an
integrated three-port converter for PV/battery hybrid systems,
which improves efficiency and reduces hardware complexity
through coordinated energy management.

Overall, the literature reveals a progression from traditional
PID-based control toward intelligent, adaptive, and
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optimization-driven strategies aimed at enhancing stability,
power quality, and energy management in microgrids.
However, gaps remain in simultaneously addressing power
quality disturbances from EV fast charging and energy
management in DC microgrids. While STATCOM devices have
proven effective for reactive power compensation and
harmonic mitigation, their performance is often constrained by
classical PI controllers. This gap motivates the present study,
which introduces an ANN-controlled STATCOM designed to
provide adaptive, real-time compensation for voltage
fluctuations and harmonics while coordinating energy
management in DC microgrids with EV fast charging

Review of Artificial Neural Network

Artificial Neural Networks (ANNs) are computational models
inspired by the structure and function of the human brain. They
consist of interconnected processing units, or neurons,
organized in layers that process information in a parallel and
distributed manner. Similar to biological synapses, these
artificial neurons transmit signals through weighted
connections, with each neuron’s output determined by a
nonlinear function of its inputs. A typical ANN architecture
includes three main layers: the input layer, which receives
external signals; one or more hidden layers, which perform
nonlinear transformations; and the output layer, which
produces the final response (Madueme and Kalu, 2015).

ANNSs are particularly powerful because of their ability to learn
from examples. During the learning phase, the network
modifies its connection weights in response to training data,
enabling it to capture complex patterns and relationships. This
adaptive learning process makes ANNs suitable for
applications such as fault detection, stability analysis, load
forecasting, and harmonic mitigation in power systems. Their
strength lies in their capacity to generalize knowledge beyond
the training data, allowing them to handle dynamic and
uncertain environments effectively.

Learning Techniques in Neural Networks

The ability of ANNs to learn depends on the training algorithm
employed. Broadly, ANN learning techniques fall into three
categories: supervised learning, unsupervised learning, and
reinforcement learning. Each has unique characteristics and
applications

e Supervised Learning

Supervised learning is the most common paradigm, where the
network is trained using input—output pairs. The algorithm
adjusts its internal weights to minimize the error between
predicted and actual outputs. This process often employs the
backpropagation algorithm, where errors are propagated
backward to refine the model iteratively (Mohan et al., 2019).
Supervised learning is effective in power system applications
with well-defined datasets, such as load forecasting or fault

classification. However, its performance relies heavily on the
quality and diversity of training data

e  Unsupervised Learning

In contrast, unsupervised learning operates without labeled
outputs. Here, the ANN identifies hidden patterns or
correlations in the input data. Techniques such as clustering and
dimensionality reduction are commonly used to group similar
data points or extract essential features for analysis (Stuart and
Peter, 2015). This paradigm is particularly useful in exploratory
applications such as anomaly detection, load profile clustering,
or uncovering consumption patterns in smart grids, where
predefined target outputs are unavailable

e Reinforcement learning

Finally, reinforcement learning (RL) enables ANNs to learn
through interaction with an environment. The system makes
decisions and receives feedback in the form of rewards or
penalties, gradually learning to maximize cumulative rewards
(Stuart and Peter, 2015). This approach is valuable in dynamic
and uncertain scenarios such as microgrid energy management,
where the ANN must adapt to real-time fluctuations in demand
and generation. Although promising, RL can be
computationally intensive and requires careful design to ensure
stability and convergence

I1. MATERIALS AND METHOD

The materials used include;

1. DC Micro-grid Model: Comprising photovoltaic (PV)
generation, battery energy storage system (BESS), and a
DC link bus.

2. EV Fast Charging Station: Modeled as a nonlinear, high-
power DC load with Level-3 charger, up to 50-350 kW
connected directly to the micro-grid.

3. STATCOM: Modeled as a voltage-sourced converter
(VSC) with an interfacing transformer and DC capacitor.

4. Artificial Neural Network (ANN) Controller: Designed
to replace conventional PI control for STATCOM
operation, providing adaptive regulation of reactive power
and harmonic mitigation

5. MATLAB/Simulink: Used for modeling, simulation, and
implementation of the ANN-based STATCOM controller.

6. Neural Network Toolbox: For training, validating, and
testing the ANN controller

Method

A simulation-based approach was employed, integrating a DC
micro-grid with renewable generation, battery storage, and EV
fast charging followed by the design and implementation of a
STATCOM equipped with an Artificial Neural Network
(ANN)-based controller.
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Figure 1: Simulink Model of a DC Microgrid Integrated with
PV, BESS, EV Fast Charging Station, and STATCOM.

Figure 1 presents the Simulink model of a DC micro-grid
integrating photovoltaic (PV) generation, a battery energy
storage system (BESS), a Level-3 EV fast charging station, and
a STATCOM for power quality enhancement. A 500 kW
photovoltaic (PV) array serves as the primary renewable energy
source, interfaced through a DC link that connects to both the
STATCOM and other subsystems. A battery energy storage
system (BESS) is integrated to support charging flexibility,
mitigate renewable intermittency, and ensure stable DC bus
voltage. The EV charging station consists of multiple Level-3
fast chargers supplying several electric  vehicles
simultaneously, modeled as high-power nonlinear loads that
introduce harmonics and voltage fluctuations. The STATCOM
is connected in shunt to the grid interface for voltage regulation
and harmonic mitigation. The model captures the dynamic
interaction between renewable energy sources, storage, and
high-power EV charging demands, making it suitable for
evaluating the performance of an ANN-controlled STATCOM
in ensuring stable and reliable micro-grid operation.

Mathematical Model

Solar Power Generation

The power output from the solar panels depends on solar
irradiance, panel area, and efficiency. The power generated by
the solar system at any time is given by

P_PV (t)=A*G(t)*nPV @)
Where;

P_PV (t) : power generated by the photovoltaic system at time,
t

A : area of the solar panels (m2)

G(t) : solar irradiance at time t (W/m2)

nPV : efficiency of the photovoltaic system

Battery Storage

Battery energy storage is essential for stabilizing intermittent
renewable generation from solar and wind. The battery's state
of charge (SoC) changes based on the charging and discharging
processes. The change in battery energy

SoC(t)
Pgischarge(t)
ncharge * charge (t) - W
=SoC(t—1)+ } @
Ebat
Where;

SoC(t): state of charge at time (t)

P_charge (t) : power used to charge the battery (W)
P_discharge (t) : power discharged from the battery (W)
n_charge and m_discharge : efficiencies for charging and
discharging the battery

E bat: battery capacity

Utility Grid

Grid interaction for a distributed generation (DG) system can
be modeled by considering both the power exported to the grid
and the power imported from the grid. If renewable generation
is low and battery could not meet the load demand, then the
power deficiency is purchased. The imported power from the
grid is given by

PE = min (Pa(t) = Poy(t) — Ry () — PU(2))

(3
ilarly, if the total generation from renewable sources and
batteries exceeds the load demand, the surplus power is
exported. The exported power to the grid is given by

PoE = max (B (t) + By (£) + PPU(E) — Py(D))

(4)
Where

P_d (t) : total power demand at time

P_pv (t) : power from Solar PV Generation

P_w (t) : power from wind Generation

P_b"out (t) : ower Supplied by the Batte

STATCOM Design
Voltage-sourced converter—based STATCOM was modeled for
reactive power compensation and harmonic mitigation.
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Figure 2: Simulink Block Diagram of STATCOM Model

Current Compensation
The shunt active filter injects current to compensate for the
reactive and harmonic component s of the load current. The

© 2025 IJSRET



International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 4, Jul-Aug-2025, ISSN (Online): 2395-566X

source current should ideally be free of harmonic and reactive
components.

Iinj = LL_IS (5)
By applying Kirchhoff’s voltage Law
=1+ Iinj (6)
DC Link Voltage
\__) — - g . \l)
i 5] -
I =] =By
\J + + + . D)

Figure 3: Simulink Block Diagram of DC Link Voltage Boost
Converter

DC voltage is given by
Vae = V2V +k ™
Where
V_LL: line to line rms voltage
k: safety factor typically ranging from 1.1 to 1.5
DC Link Capacitor
DC link capacitor is given by

c, - ®)
CTV2 s AV,
Where
P: load active power
Vdc: dc link voltage
AV, voltage ripple (20V)
w: angular frequency
DC Link Inductance
The shunt active filter inductor value is given by

V25V

21 foy*Al

Lsh -

€)

Where

V: rms line voltage

fsw: switching frequency (10kHz)

Al : allowable ripple current (5A)

Total Harmonic Current Distortion (THDc)

IZ+I2+12+12..+13
THD, = ——x 100%

1
=JE+IE+12+12.

| peak|

(10)
a1
(12)

T2

rms
Crest Factor =
Where

I; is the amplitude of the i harmonic,
1; is that for the fundamental component

rms

Design of ANN Controller

The Artificial Neural Network (ANN) controller is employed
to regulate the operation of the STATCOM, enabling adaptive
voltage support, harmonic mitigation, and reactive power
compensation in the DC microgrid under varying load
conditions imposed by EV fast charging.

Figure 4: Simulink Block of ANN STATCOM Controller

ANN Training

When a neural network is trained for a specific task, the process
begins by comparing the network’s predicted output with the
actual target output. The difference between these two values is
quantified using an error function, which serves as a measure
of accuracy. The main objective of training is to minimize this
error so that the network produces predictions that closely
match the desired output. By iteratively adjusting the internal
weights and connections, the network gradually improves its
ability to process inputs and deliver accurate results.

Beyond minimizing errors, the training process also enables the
neural network to learn and adapt. This adaptability allows the
network to recognize patterns, generalize knowledge, and apply
it to new or unseen inputs. In doing so, the system develops the
capability to solve complex problems across different domains,
from classification and prediction to decision-making. The
general architecture of a neural network, showing the flow of
data through input, hidden, and output layers, is presented in
Figure 5

13

Figure 5: Neural Network Structure
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The input received by the neurons is given by
Input (x) = [x;] (13)

The Initialize weights and bias of the ANN structure is giving

by
w=[w; w, ] [b] (14)

The neurons sum all the signals it receives, with each signal
being multiplied by its associated weights on the connection.

The weighted sum of the output node i is giving by

F; = ([Wl w, | X [i;]) +b (15)
Fy = {(wy Xxy3) + (W X x3)} + b (16)
Calculated output is given by

Ouput (y;) = O(F) a7)
(i) =0[wy X xp) + (W, Xx))] +b (18)
001 = (=) (19)
) = y (20)

1+e—((W1xxy)+(Waxxy;)+b)

Where

X1;, X,i: inputs received by neurons

Wi, Wy;: weights of the neurons

b; : is the neuron threshold.

@= activation function (Tan Sigmoid Function)

Fi = weighted sum of the output node i

e;=error in node i

yi : is the output that passes through a sigmoid transfer function
that is normally non-linear to give the final output.

ITII. RESULT AND DISCUSSION

Figure 6 illustrates the power profiles of the major components
within the DC micro-grid during the simulation. The PV output
power (Ppv) initially peaks at about 2000kW, then declines to
around 1200 kW at 1.5 s before recovering toward 1700 kW by
the end of the interval. The battery (Pbat) dynamically responds
by charging up to approximately +500kW when surplus PV
power is available and discharging down to about —400kW
when PV generation drops, thereby balancing the system.

The STATCOM (PSTATCOM) maintains a nearly constant
active power around 2000 kW, confirming its primary function
of voltage regulation and reactive power support rather than
active power variability. Meanwhile, the grid power (Pgrid)
remains stable, fluctuating slightly around 500-700kW, which
demonstrates that the coordinated operation of PV, BESS, and
STATCOM reduces stress on the grid while ensuring stable
supply for the EV fast charging station.

Ppv PETATCOM o

W
W

Poat Porwt

Figure 6: Power Profiles of PV, STATCOM, BESS, and Grid
in the DC Micro-grid under EV Fast Charging Conditions

Figure 7 shows the power demand profiles of the EV fast
charging units and the static load connected to the DC micro-
grid. EV Charger 1 (P_EV_1) maintains a steady demand of
about 600 kW, while EV Charger 2 (P_EV_2) operates close to
480 kW throughout the simulation. EV Charger 3 (P_EV _3)
records a relatively lower but stable demand of approximately
250 kW. In parallel, the static load (P_Static Load) remains
constant at around 500 kW, indicating baseline consumption
independent of EV charging dynamics. Together, these profiles
highlight the high and sustained power demand imposed by
Level-3 EV fast charging stations on the micro-grid, reinforcing
the necessity of coordinated energy management with BESS
and ANN-controlled STATCOM to ensure voltage stability,
minimize grid stress, and maintain power quality under
continuous heavy loading.

P EV.Y P EV ) m
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Figure 7: Power Demand Profiles of EV Charging Units and
Static Load in the DC Microgrid

Figure 8 illustrates the harmonic current distortion introduced
at the point of common coupling (PCC) by the EV fast charging
station. The observed waveform deviates from the ideal
sinusoidal shape of the fundamental frequency due to the
presence of multiple harmonic components. Such distortions
are typical in nonlinear loads like fast chargers, where high-
power converters interact with the grid. According to the [EEE
519-2022 standard for low-voltage systems (<1.0kV), the
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permissible individual harmonic distortion should remain
below 5%, while the total harmonic distortion (THD) should
not exceed 8%. Exceeding these limits can lead to overheating
of equipment, reduced power quality, and overall inefficiency
in the micro-grid, underscoring the importance of effective
compensation strategies such as the ANN-controlled
STATCOM used in this study.
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Figure 8: Shows Injected Harmonic Current Waveform

Figure 9 presents the harmonic spectrum order injected at the
point of common coupling (PCC) in the power system network.
The spectrum clearly indicates the presence of dominant odd
harmonics, particularly at the 11th and 13th orders, which
significantly distort the current waveform. The computed total
harmonic distortion (THD) at the PCC is 14.05%, exceeding
the IEEE 519-2022 standard limit of 8% for medium-voltage
systems. This violation highlights the adverse impact of EV fast
charging stations on power quality and emphasizes the
necessity of advanced mitigation techniques, such as ANN-
controlled STATCOM, to maintain compliance with regulatory
standards and ensure stable microgrid operation.
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Figure 9: Shows Order of Harmomc Current Spectrum

Figure 10 shows the current waveform at the point of common
coupling (PCC) after the installation of the STATCOM for
harmonic mitigation. With the ANN-controlled STATCOM in
operation, the previously dominant 11th and 13th harmonics
introduced by the EV fast charging station were effectively
eliminated. As a result, the current waveform is significantly
smoother and closer to the ideal sinusoidal profile,
demonstrating the capability of the STATCOM to restore power
quality and ensure compliance with IEEE 519-2022 standards.

Figure 10: Shows Current Waveform after STATCOM
Installation

Figure 11 presents the harmonic spectrum obtained from FFT
analysis after the installation of the STATCOM. The results
reveal a remarkable improvement in power quality, with the
total harmonic distortion (THD) at the PCC reduced to just
1.23%, well within the IEEE 519-2022 compliance limits.
Specifically, the dominant harmonics observed earlier were
almost completely suppressed, with the 11th-order component
reduced to 0.01% and the 13th-order reduced to 0.15%.
Compared to the uncompensated case where the THD reached
14.05%, this represents a reduction of over 90%, clearly
demonstrating the effectiveness of the ANN-tuned STATCOM
controller in mitigating harmonic distortion caused by EV fast
charging, restoring waveform integrity, and ensuring stable and
reliable micro-grid operation.
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Figure 11: Shows Order of Harmomc Current Spectrum after
STATCOM Installation

Figure 12 illustrates the performance plot of the mean square
error (MSE) against the number of iterations (epochs),
providing insight into the effectiveness of the ANN training
process. The blue curve corresponds to training results, the
green curve to validation results, and the red curve to test
results. As training progresses, the MSE is calculated at each
epoch, and the optimal point is identified where the three curves
nearly coincide, signifying the best generalization of the model.
At this stage, further training is unnecessary, as it could lead to
overfitting and reduced prediction accuracy. A closer look at the
plot reveals that the best validation performance was achieved
at epoch 20, with a minimized error of 0.0034611, indicating a
well-trained model capable of delivering accurate predictions
for STATCOM control in the DC microgrid
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Figure 12: Shows Training Performance of ANN Model

Figure 13 presents the regression plot, which evaluates the
fitness of the ANN training outputs against the actual target data
obtained from the PI controller. In the plot, the dashed line
represents the ideal target (perfect fit), while the solid line
shows the best linear regression between the predicted outputs
and the targets. In regression analysis, an R-value of 1 indicates
a perfect linear relationship, while an R-value of 0 suggests no
correlation. As shown in the figure, the obtained R-value of
0.9879 demonstrates an excellent correlation, confirming that
the proposed ANN controller achieved a near-perfect mapping
between inputs and outputs. This high regression accuracy
validates the effectiveness of the training, testing, and
validation processes, thereby reinforcing the ANN controller’s
robustness and reliability for harmonic mitigation in the EV fast
charging station
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Figure 13: Shows Fitness of Training Data

IV. CONCLUSION

This study advances the field of intelligent control for DC
microgrids with electric vehicle (EV) fast charging integration.
While STATCOMSs are well established for voltage regulation
and harmonic mitigation, their performance has traditionally
relied on proportional integral (PI) controllers, which are
limited in handling nonlinear and rapidly varying conditions.
This work introduces an Artificial Neural Network (ANN)-
based STATCOM controller, specifically designed for DC
micro-grids with Level-3 EV fast charging, providing enhanced
adaptability, robustness, and dynamic response. The study also

examine energy management and power quality independently,
areas often treated separately.

Through ANN-controlled STATCOM operation, the research
demonstrates simultaneous improvements in voltage stability,
harmonic suppression, and power flow optimization.
Furthermore, a comprehensive simulation framework
incorporating renewable energy sources (RES), energy storage
systems (ESS), and fast charging stations has been developed,
offering a platform for further investigation into micro-grid
resilience and intelligent compensation strategies. Based on
these contributions, several recommendations are proposed.

Future research should explore hybrid intelligent control
approaches, such as ANN combined with fuzzy logic or
reinforcement learning, to further enhance performance under
uncertain EV charging conditions. Hardware-in-the-loop (HIL)
validation and small-scale experimental prototypes are also
recommended to establish practical feasibility. For industry,
the adoption of ANN-controlled STATCOMs can mitigate
voltage instability and power quality deterioration in EV
charging networks. Policymakers should incentivize the
integration of renewable energy and advanced compensation
technologies into EV infrastructure to enable sustainable and
low-carbon transport electrification.
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