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Abstract- The rapid integration of electric vehicle (EV) fast charging stations in DC micro-grids has introduced significant power 

quality challenges, particularly harmonic current distortion at the point of common coupling (PCC). In this study, a DC 

microgrid integrating photovoltaic (PV) generation, battery energy storage systems (BESS), and a Level-3 EV fast charging 

station was modeled in MATLAB/Simulink to examine the effect of harmonic distortion and evaluate mitigation using an 

Artificial Neural Network (ANN)-controlled Static Synchronous Compensator (STATCOM). Base case simulation results 

revealed that the EV fast charging station injected excessive harmonic distortion into the network, with dominant odd harmonics 

at the 11th and 13th orders, leading to a total harmonic distortion (THD) of 14.05%. This value significantly exceeds the IEEE 

519-2022 standard limit of 8% for medium-voltage systems. Following the installation of an ANN-tuned STATCOM at the PCC, 

the harmonic distortion was substantially mitigated, reducing the 11th and 13th orders to 0.01% and 0.15% respectively. 

Consequently, the total harmonic distortion was minimized to 1.23%, achieving a 91.24% reduction and ensuring full compliance 

with IEEE standards. Furthermore, the ANN controller demonstrated excellent training performance with a best validation 

mean square error of 0.0034611 at epoch 20 and a regression correlation coefficient of R = 0.9879, validating its accuracy and 

robustness. These findings confirm that ANN-controlled STATCOM provides an effective and intelligent solution for enhancing 

power quality and system stability in DC micro-grids with EV fast charging integration. 
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I. INTRODUCTION 

 
Recent technological advances and the anticipated economic 

and environmental benefits of electrified transport have 

significantly accelerated the adoption of electric vehicles 

(EVs). According to the International Energy Agency (IEA), 

the global EV fleet is projected to reach nearly 250 million by 

2030. This trend, while promising for sustainable development, 

poses major challenges for existing power systems, especially 

in the context of EV charging infrastructure. Traditional EV 

charging units Level 1 and Level 2 require between 4 to 16 

hours to fully charge a battery, making them impractical for 

scenarios requiring fast turnaround. To address this limitation, 

Level-3 DC fast charging units have emerged, capable of 

charging an EV in less than 30 minutes. However, the 

deployment of EV fast charging stations (EVCS) introduces 

significant technical concerns. These units impose high 

instantaneous power demand, which can stress the distribution 

network, increase carbon emissions when powered from 

conventional grids, and contribute to voltage fluctuations, 

harmonic distortion, and power losses. The situation is even 

more critical at the residential and community distribution 

level, where such chargers are directly connected to relatively 

weak networks. To mitigate these impacts, DC micro-grids 

integrating renewable energy sources (RES) and energy storage 

systems (ESS) have gained attention as a viable solution for 

supporting EV fast charging. Yet, the dynamic and nonlinear 

characteristics of EVCS still pose power quality and energy 

management challenges. Flexible AC Transmission System 

(FACTS) devices, particularly the Static Synchronous 

Compensator (STATCOM), are effective in regulating voltage, 

providing reactive power support, and improving power 

quality. Nevertheless, the effectiveness of STATCOM depends 

on its control strategy. Conventional proportional–integral (PI) 

controllers are limited under rapidly varying load and 

renewable conditions. 

 

Artificial Neural Network (ANN)-based control presents a 

promising alternative due to its adaptive and data-driven 

capabilities. ANN-controlled STATCOMs can enhance 

microgrid stability, reduce harmonic distortion, and ensure 

optimal energy management under the complex and nonlinear 

dynamics of EV fast charging. This motivates the need to 

explore ANN-based STATCOM control for advanced energy 
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management and power quality enhancement in DC micro-

grids with EV fast charging integration. 

 

The increasing penetration of distributed generation (DG) and 

electric vehicle (EV) fast charging in modern grids has created 

complex challenges in stability, control, and power quality 

management. Various control strategies and compensation 

devices have been proposed in the literature to address these 

challenges. Electrical power systems are designed to provide 

consistent and reliable voltage to end users. Accurately 

predicting future energy demand is crucial for effective 

planning of power generation, distribution, and infrastructure 

development to meet the anticipated needs of the community 

(Ijeoma and Odu, 2025a). Electricity can be generated in 

various types of power plants, including thermal, hydroelectric, 

and nuclear facilities. Once generated, the electricity is 

supplied to a transmission substation located near the power 

plant. At this substation, the voltage is significantly increased 

using step-up transformers. This increase in voltage helps to 

minimize transmission losses over long distances (Ijeoma and 

Olisa, 2019). 

 

Mwasilu and Ojo (2024) highlight the limitations of voltage-

sourced converters (VSCs) in grid-connected DG systems, 

particularly their interaction with LCL filters, which can trigger 

resonance issues and compromise stability. Their proposed 

robust multi-input multi-output (R-MIMO) controller mitigates 

high-frequency switching harmonics and improves reliability 

without the need for additional damping mechanisms. This 

advancement emphasizes the importance of intelligent control 

strategies for stability under diverse operating conditions. 

 

Shravani et al. (2023) investigate the mitigation of harmonics 

generated by nonlinear loads. Their study demonstrates the 

effectiveness of active power conditioners, such as Shunt 

Active Power Filters (SAPFs) and Unified Power Quality 

Conditioners (UPQCs), especially when combined with 

renewable energy sources. While simulations confirm the 

benefits, the study highlights the gap in real-world 

implementation, pointing to the need for robust controllers that 

adapt to dynamic grid conditions. 

 

Altin et al. (2023) propose a multi-agent control system for DC 

micro-grids integrating photovoltaics, wind, storage, and 

synchronous generation. Their results confirm the ability of 

multi-agent frameworks to stabilize DC bus voltage and ensure 

effective energy management. However, their scope remains 

limited to a few operational scenarios, leaving open questions 

about scalability and adaptability in EV-integrated DC micro-

grids. 

 

Bianchi and Medici (2017) explore Proportional-Integral-

Derivative (PID) controllers in DG systems, noting their 

simplicity and effectiveness in stable environments but also 

their weaknesses in highly nonlinear, dynamic systems such as 

those influenced by EV fast charging. Tuan and Wang (2018) 

advance this discussion by demonstrating that fuzzy logic 

control (FLC) can handle uncertainty in renewable-based DG 

systems, although rule construction becomes increasingly 

complex for larger networks. Just as the continuous flow of 

blood is essential for human survival, a stable and reliable 

supply of electricity is fundamental to national development. 

Without electricity, no city or nation can thrive (Fubara and 

Ijeoma, 2019). Innovative energy practices and solutions offer 

a clear pathway to uplifting communities worldwide. By 

prioritizing localized energy systems, adopting renewable 

technologies, enhancing energy efficiency, and fostering 

inclusive policies, we can create a world where energy access 

is not a privilege but a fundamental right (Ijeoma, 2025c). 

 

Zhao and Xu (2019) show that Model Predictive Control 

(MPC) optimizes power dispatch in hybrid DG systems by 

predicting future states, though its computational burden 

remains a barrier for real-time EV applications. Similarly, Pan 

and Wang (2018) emphasize the effectiveness of adaptive 

control in handling time-varying dynamics, but note 

implementation challenges in large-scale systems.  

Liu and Li (2019) complement this with the use of Sliding 

Mode Control (SMC), which demonstrates robustness to 

disturbances but introduces chattering effects that can limit 

practical deployment. 

 

Huang and Tang (2017) employ Genetic Algorithms (GA) and 

Particle Swarm Optimization (PSO) to optimize renewable 

integration, while Mir Nahidul Ambia et al. (2015) apply 

Harmony Search Algorithm (HSA) to improve controller 

performance. Both approaches highlight strong adaptability but 

face computational challenges and limited real-world 

validation. 

Zhou and Yu (2020) present hybrid control strategies, such as 

FLC-PID or MPC combinations, to balance multiple objectives 

in DG systems, while Zhou and Zhang (2020) explore VSC-

based voltage and reactive power control for stable renewable 

integration.  

Zhang and Wang (2019) further extend this by proposing 

Unified Power Quality Conditioners (UPQCs) to tackle 

multiple power quality issues simultaneously, though their high 

cost and complexity limit scalability. 

 

Razmi and Lu (2022) provide a comprehensive review of 

Model Predictive Control in microgrid applications, stressing 

the importance of hierarchical strategies for distributed energy 

resource management but identifying gaps in real-world 

validation.  

Hong et al. (2019) contribute to this by introducing an 

integrated three-port converter for PV/battery hybrid systems, 

which improves efficiency and reduces hardware complexity 

through coordinated energy management. 

Overall, the literature reveals a progression from traditional 

PID-based control toward intelligent, adaptive, and 
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optimization-driven strategies aimed at enhancing stability, 

power quality, and energy management in microgrids. 

However, gaps remain in simultaneously addressing power 

quality disturbances from EV fast charging and energy 

management in DC microgrids. While STATCOM devices have 

proven effective for reactive power compensation and 

harmonic mitigation, their performance is often constrained by 

classical PI controllers. This gap motivates the present study, 

which introduces an ANN-controlled STATCOM designed to 

provide adaptive, real-time compensation for voltage 

fluctuations and harmonics while coordinating energy 

management in DC microgrids with EV fast charging 

 

Review of Artificial Neural Network 

Artificial Neural Networks (ANNs) are computational models 

inspired by the structure and function of the human brain. They 

consist of interconnected processing units, or neurons, 

organized in layers that process information in a parallel and 

distributed manner. Similar to biological synapses, these 

artificial neurons transmit signals through weighted 

connections, with each neuron’s output determined by a 

nonlinear function of its inputs. A typical ANN architecture 

includes three main layers: the input layer, which receives 

external signals; one or more hidden layers, which perform 

nonlinear transformations; and the output layer, which 

produces the final response (Madueme and Kalu, 2015). 

 

ANNs are particularly powerful because of their ability to learn 

from examples. During the learning phase, the network 

modifies its connection weights in response to training data, 

enabling it to capture complex patterns and relationships. This 

adaptive learning process makes ANNs suitable for 

applications such as fault detection, stability analysis, load 

forecasting, and harmonic mitigation in power systems. Their 

strength lies in their capacity to generalize knowledge beyond 

the training data, allowing them to handle dynamic and 

uncertain environments effectively. 

 

Learning Techniques in Neural Networks 

The ability of ANNs to learn depends on the training algorithm 

employed. Broadly, ANN learning techniques fall into three 

categories: supervised learning, unsupervised learning, and 

reinforcement learning. Each has unique characteristics and 

applications 

 

 Supervised Learning 

Supervised learning is the most common paradigm, where the 

network is trained using input–output pairs. The algorithm 

adjusts its internal weights to minimize the error between 

predicted and actual outputs. This process often employs the 

backpropagation algorithm, where errors are propagated 

backward to refine the model iteratively (Mohan et al., 2019). 

Supervised learning is effective in power system applications 

with well-defined datasets, such as load forecasting or fault 

classification. However, its performance relies heavily on the 

quality and diversity of training data 

 

 Unsupervised Learning  

In contrast, unsupervised learning operates without labeled 

outputs. Here, the ANN identifies hidden patterns or 

correlations in the input data. Techniques such as clustering and 

dimensionality reduction are commonly used to group similar 

data points or extract essential features for analysis (Stuart and 

Peter, 2015). This paradigm is particularly useful in exploratory 

applications such as anomaly detection, load profile clustering, 

or uncovering consumption patterns in smart grids, where 

predefined target outputs are unavailable 

 

 Reinforcement learning 

Finally, reinforcement learning (RL) enables ANNs to learn 

through interaction with an environment. The system makes 

decisions and receives feedback in the form of rewards or 

penalties, gradually learning to maximize cumulative rewards 

(Stuart and Peter, 2015). This approach is valuable in dynamic 

and uncertain scenarios such as microgrid energy management, 

where the ANN must adapt to real-time fluctuations in demand 

and generation. Although promising, RL can be 

computationally intensive and requires careful design to ensure 

stability and convergence 

 

II. MATERIALS AND METHOD 
 

The materials used include; 

1. DC Micro-grid Model: Comprising photovoltaic (PV) 

generation, battery energy storage system (BESS), and a 

DC link bus. 

2. EV Fast Charging Station: Modeled as a nonlinear, high-

power DC load with Level-3 charger, up to 50-350 kW 

connected directly to the micro-grid. 

3. STATCOM: Modeled as a voltage-sourced converter 

(VSC) with an interfacing transformer and DC capacitor. 

4. Artificial Neural Network (ANN) Controller: Designed 

to replace conventional PI control for STATCOM 

operation, providing adaptive regulation of reactive power 

and harmonic mitigation 

5. MATLAB/Simulink: Used for modeling, simulation, and 

implementation of the ANN-based STATCOM controller. 

6. Neural Network Toolbox: For training, validating, and 

testing the ANN controller 

 

Method  

A simulation-based approach was employed, integrating a DC 

micro-grid with renewable generation, battery storage, and EV 

fast charging followed by the design and implementation of a 

STATCOM equipped with an Artificial Neural Network 

(ANN)-based controller. 
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Description of Study Case Model 

 

 
 

Figure 1: Simulink Model of a DC Microgrid Integrated with 

PV, BESS, EV Fast Charging Station, and STATCOM. 

 

Figure 1 presents the Simulink model of a DC micro-grid 

integrating photovoltaic (PV) generation, a battery energy 

storage system (BESS), a Level-3 EV fast charging station, and 

a STATCOM for power quality enhancement. A 500 kW 

photovoltaic (PV) array serves as the primary renewable energy 

source, interfaced through a DC link that connects to both the 

STATCOM and other subsystems. A battery energy storage 

system (BESS) is integrated to support charging flexibility, 

mitigate renewable intermittency, and ensure stable DC bus 

voltage. The EV charging station consists of multiple Level-3 

fast chargers supplying several electric vehicles 

simultaneously, modeled as high-power nonlinear loads that 

introduce harmonics and voltage fluctuations. The STATCOM 

is connected in shunt to the grid interface for voltage regulation 

and harmonic mitigation. The model captures the dynamic 

interaction between renewable energy sources, storage, and 

high-power EV charging demands, making it suitable for 

evaluating the performance of an ANN-controlled STATCOM 

in ensuring stable and reliable micro-grid operation. 

 

Mathematical Model  

Solar Power Generation 

The power output from the solar panels depends on solar 

irradiance, panel area, and efficiency. The power generated by 

the solar system at any time is given by 

P_PV (t)=A*G(t)*ηPV                                                              (1)                                                                 

Where; 

P_PV (t)  : power generated by the photovoltaic system at time, 

t 

A : area of the solar panels (m2) 

G(t)  : solar irradiance at time t (W/m2) 

ηPV : efficiency of the photovoltaic system 

 

Battery Storage  

Battery energy storage is essential for stabilizing intermittent 

renewable generation from solar and wind. The battery's state 

of charge (SoC) changes based on the charging and discharging 

processes. The change in battery energy 

𝑆𝑜𝐶(𝑡)

= 𝑆𝑜𝐶(𝑡 − 1) +

𝜂𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)  −
𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)   

𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
 

𝐸𝑏𝑎𝑡

        (2) 

 

Where; 

SoC(t): state of charge at time (t) 

P_charge (t) : power used to charge the battery (W) 

P_discharge (t)  : power discharged from the battery (W) 

η_charge  and η_discharge  : efficiencies for charging and 

discharging the battery 

E_bat: battery capacity 

 

Utility Grid  

Grid interaction for a distributed generation (DG) system can 

be modeled by considering both the power exported to the grid 

and the power imported from the grid. If renewable generation 

is low and battery could not meet the load demand, then the 

power deficiency is purchased. The imported power from the 

grid is given by 

𝑃𝑔𝑟𝑖𝑑
𝑖𝑚𝑝

= 𝑚𝑖𝑛 (𝑃𝑑(𝑡) − 𝑃𝑝𝑣(𝑡) − 𝑃𝑤(𝑡) − 𝑃𝑏
𝑜𝑢𝑡(𝑡))              (3) 

 

ilarly, if the total generation from renewable sources and 

batteries exceeds the load demand, the surplus power is 

exported. The exported power to the grid is given by 

𝑃𝑔𝑟𝑖𝑑
𝑒𝑥𝑝

= 𝑚𝑎𝑥 (𝑃𝑝𝑣(𝑡) + 𝑃𝑤(𝑡) + 𝑃𝑏
𝑜𝑢𝑡(𝑡) − 𝑃𝑑(𝑡))              (4)                                                        

 

Where 

P_d (t) : total power demand at time 

P_pv (t) : power from Solar PV Generation 

P_w (t) : power from wind Generation 

P_b^out (t) ∶ ower Supplied by the Batte 

 

STATCOM Design 

Voltage-sourced converter–based STATCOM was modeled for 

reactive power compensation and harmonic mitigation. 

 

 
Figure 2: Simulink Block Diagram of STATCOM Model 

 

Current Compensation 

The shunt active filter injects current to compensate for the 

reactive and harmonic component s of the load current. The 
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source current should ideally be free of harmonic and reactive 

components. 

𝐼𝑖𝑛𝑗 = 𝐿𝐿−𝐼𝑠                                                                                (5)                    

                       

By applying Kirchhoff’s voltage Law 

𝐼𝑠 = 𝐼𝐿 + 𝐼𝑖𝑛𝑗                                                                               (6)                                                        

DC Link Voltage  

 

 
Figure 3: Simulink Block Diagram of DC Link Voltage Boost 

Converter 

 

DC voltage is given by 

𝑉𝑑𝑐 = √2 ∗ 𝑉𝐿𝐿 ∗ 𝑘                                                                      (7)          

                        

Where 

V_LL: line to line rms voltage 

k: safety factor typically ranging from 1.1 to 1.5 

DC Link Capacitor  

DC link capacitor is given by  

𝑪𝒅𝒄 =
𝟐𝑷

𝑽𝒅𝒄
𝟐 ∗ 𝝎 ∗ ∆𝑽𝒅𝒄

                                                              (8) 

 

Where 

P: load active power 

Vdc: dc link voltage 

∆𝑉𝑑𝑐: voltage ripple (20V) 

𝜔: angular frequency 

DC Link Inductance 

The shunt active filter inductor value is given by  

𝐿𝑠ℎ =
√2∗𝑉

2𝜋∗𝑓𝑠𝑤∗∆𝐼
                                                                              (9)           

 

Where 

𝑉:  rms line voltage  

𝑓𝑠𝑤: switching frequency (10kHz) 

∆𝐼 : allowable ripple current (5A) 

Total Harmonic Current Distortion (THDc) 

𝑇𝐻𝐷𝑐 =
√𝐼2

2+𝐼3
2+𝐼4

2+𝐼5
2…+𝐼𝑛

2

𝐼1
× 100%                                          (10)                            

𝐼𝑟𝑚𝑠 = √𝐼2
2 + 𝐼3

2 + 𝐼4
2 + 𝐼5

2 … + 𝐼𝑛
2                                         (11)                                                                                    

𝐶𝑟𝑒𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =
|𝐼𝑝𝑒𝑎𝑘|

𝐼𝑟𝑚𝑠
                                                           (12)                                                                                                             

Where 

 Ii is the amplitude of the ith harmonic,  

 I1 is that for the fundamental component 

Design of ANN Controller 
The Artificial Neural Network (ANN) controller is employed 

to regulate the operation of the STATCOM, enabling adaptive 

voltage support, harmonic mitigation, and reactive power 

compensation in the DC microgrid under varying load 

conditions imposed by EV fast charging. 

 

 
Figure 4: Simulink Block of ANN STATCOM Controller 

 

ANN Training 

When a neural network is trained for a specific task, the process 

begins by comparing the network’s predicted output with the 

actual target output. The difference between these two values is 

quantified using an error function, which serves as a measure 

of accuracy. The main objective of training is to minimize this 

error so that the network produces predictions that closely 

match the desired output. By iteratively adjusting the internal 

weights and connections, the network gradually improves its 

ability to process inputs and deliver accurate results. 

 

Beyond minimizing errors, the training process also enables the 

neural network to learn and adapt. This adaptability allows the 

network to recognize patterns, generalize knowledge, and apply 

it to new or unseen inputs. In doing so, the system develops the 

capability to solve complex problems across different domains, 

from classification and prediction to decision-making. The 

general architecture of a neural network, showing the flow of 

data through input, hidden, and output layers, is presented in 

Figure 5 

 

 
 

Figure 5: Neural Network Structure 
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The input received by the neurons is given by 

𝐼𝑛𝑝𝑢𝑡 (𝑥) = [𝑥𝑖]                                         (13)  

 

 The Initialize weights and bias of the ANN structure is giving 

by 

𝑤 = [𝑤1    𝑤2   ], [𝑏]                                   (14)      

                                                                                                           

The neurons sum all the signals it receives, with each signal 

being multiplied by its associated weights on the connection. 

The weighted sum of the output node i is giving by 

𝐹𝑖 = ([𝑤1    𝑤2   ] × [
𝑥1𝑖

𝑥2𝑖
]) + 𝑏                    (15)                        

𝐹𝑖 = {(𝑤1 × 𝑥1𝑖) + (𝑤2 × 𝑥2𝑖)} + 𝑏            (16)                    

Calculated output is given by 

𝑂𝑢𝑝𝑢𝑡 (𝑦𝑖) = ∅(𝐹𝑖)                                    (17)  
(𝑦𝑖)  = ∅[(𝑤1 × 𝑥1𝑖) + (𝑤2 × 𝑥2𝑖)] + 𝑏       (18)    

∅(𝑦𝑖) = (
1

1+𝑒−𝑣𝑖
)                                         (19) 

 (𝑦) =
1

1+𝑒−((𝑤1×𝑥1𝑖)+(𝑤2×𝑥2𝑖)+𝑏)
                     (20) 

 

Where 

𝑥1𝑖 , 𝑥2𝑖 : inputs received by neurons  

𝑤1𝑖 , 𝑤2𝑖: weights of the neurons 

bj : is the neuron threshold.  

∅= activation function (Tan Sigmoid Function) 

Fi = weighted sum of the output node i 

𝑒𝑖=error in node i 

yi : is the output that passes through a sigmoid transfer function 

that is normally non-linear to give the final output. 

 

III. RESULT AND DISCUSSION 

 

Figure 6 illustrates the power profiles of the major components 

within the DC micro-grid during the simulation. The PV output 

power (Ppv) initially peaks at about 2000kW, then declines to 

around 1200 kW at 1.5 s before recovering toward 1700 kW by 

the end of the interval. The battery (Pbat) dynamically responds 

by charging up to approximately +500kW when surplus PV 

power is available and discharging down to about –400kW 

when PV generation drops, thereby balancing the system.  

 

The STATCOM (PSTATCOM) maintains a nearly constant 

active power around 2000 kW, confirming its primary function 

of voltage regulation and reactive power support rather than 

active power variability. Meanwhile, the grid power (Pgrid) 

remains stable, fluctuating slightly around 500–700kW, which 

demonstrates that the coordinated operation of PV, BESS, and 

STATCOM reduces stress on the grid while ensuring stable 

supply for the EV fast charging station. 

 

 
 

Figure 6: Power Profiles of PV, STATCOM, BESS, and Grid 

in the DC Micro-grid under EV Fast Charging Conditions 

 

Figure 7 shows the power demand profiles of the EV fast 

charging units and the static load connected to the DC micro-

grid. EV Charger 1 (P_EV_1) maintains a steady demand of 

about 600 kW, while EV Charger 2 (P_EV_2) operates close to 

480 kW throughout the simulation. EV Charger 3 (P_EV_3) 

records a relatively lower but stable demand of approximately 

250 kW. In parallel, the static load (P_Static_Load) remains 

constant at around 500 kW, indicating baseline consumption 

independent of EV charging dynamics. Together, these profiles 

highlight the high and sustained power demand imposed by 

Level-3 EV fast charging stations on the micro-grid, reinforcing 

the necessity of coordinated energy management with BESS 

and ANN-controlled STATCOM to ensure voltage stability, 

minimize grid stress, and maintain power quality under 

continuous heavy loading. 

 

 
Figure 7: Power Demand Profiles of EV Charging Units and 

Static Load in the DC Microgrid 

 

Figure 8 illustrates the harmonic current distortion introduced 

at the point of common coupling (PCC) by the EV fast charging 

station. The observed waveform deviates from the ideal 

sinusoidal shape of the fundamental frequency due to the 

presence of multiple harmonic components. Such distortions 

are typical in nonlinear loads like fast chargers, where high-

power converters interact with the grid. According to the IEEE 

519-2022 standard for low-voltage systems (≤1.0kV), the 
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permissible individual harmonic distortion should remain 

below 5%, while the total harmonic distortion (THD) should 

not exceed 8%. Exceeding these limits can lead to overheating 

of equipment, reduced power quality, and overall inefficiency 

in the micro-grid, underscoring the importance of effective 

compensation strategies such as the ANN-controlled 

STATCOM used in this study. 

 

 
Figure 8: Shows Injected Harmonic Current Waveform 

 

Figure 9 presents the harmonic spectrum order injected at the 

point of common coupling (PCC) in the power system network. 

The spectrum clearly indicates the presence of dominant odd 

harmonics, particularly at the 11th and 13th orders, which 

significantly distort the current waveform. The computed total 

harmonic distortion (THD) at the PCC is 14.05%, exceeding 

the IEEE 519-2022 standard limit of 8% for medium-voltage 

systems. This violation highlights the adverse impact of EV fast 

charging stations on power quality and emphasizes the 

necessity of advanced mitigation techniques, such as ANN-

controlled STATCOM, to maintain compliance with regulatory 

standards and ensure stable microgrid operation. 

 

 
Figure 9: Shows Order of Harmonic Current Spectrum 

 

Figure 10 shows the current waveform at the point of common 

coupling (PCC) after the installation of the STATCOM for 

harmonic mitigation. With the ANN-controlled STATCOM in 

operation, the previously dominant 11th and 13th harmonics 

introduced by the EV fast charging station were effectively 

eliminated. As a result, the current waveform is significantly 

smoother and closer to the ideal sinusoidal profile, 

demonstrating the capability of the STATCOM to restore power 

quality and ensure compliance with IEEE 519-2022 standards. 

 
Figure 10: Shows Current Waveform after STATCOM 

Installation 

 

Figure 11 presents the harmonic spectrum obtained from FFT 

analysis after the installation of the STATCOM. The results 

reveal a remarkable improvement in power quality, with the 

total harmonic distortion (THD) at the PCC reduced to just 

1.23%, well within the IEEE 519-2022 compliance limits. 

Specifically, the dominant harmonics observed earlier were 

almost completely suppressed, with the 11th-order component 

reduced to 0.01% and the 13th-order reduced to 0.15%. 

Compared to the uncompensated case where the THD reached 

14.05%, this represents a reduction of over 90%, clearly 

demonstrating the effectiveness of the ANN-tuned STATCOM 

controller in mitigating harmonic distortion caused by EV fast 

charging, restoring waveform integrity, and ensuring stable and 

reliable micro-grid operation. 

 

 
Figure 11: Shows Order of Harmonic Current Spectrum after 

STATCOM Installation 

 

Figure 12 illustrates the performance plot of the mean square 

error (MSE) against the number of iterations (epochs), 

providing insight into the effectiveness of the ANN training 

process. The blue curve corresponds to training results, the 

green curve to validation results, and the red curve to test 

results. As training progresses, the MSE is calculated at each 

epoch, and the optimal point is identified where the three curves 

nearly coincide, signifying the best generalization of the model. 

At this stage, further training is unnecessary, as it could lead to 

overfitting and reduced prediction accuracy. A closer look at the 

plot reveals that the best validation performance was achieved 

at epoch 20, with a minimized error of 0.0034611, indicating a 

well-trained model capable of delivering accurate predictions 

for STATCOM control in the DC microgrid 
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Figure 12: Shows Training Performance of ANN Model 

 

Figure 13 presents the regression plot, which evaluates the 

fitness of the ANN training outputs against the actual target data 

obtained from the PI controller. In the plot, the dashed line 

represents the ideal target (perfect fit), while the solid line 

shows the best linear regression between the predicted outputs 

and the targets. In regression analysis, an R-value of 1 indicates 

a perfect linear relationship, while an R-value of 0 suggests no 

correlation. As shown in the figure, the obtained R-value of 

0.9879 demonstrates an excellent correlation, confirming that 

the proposed ANN controller achieved a near-perfect mapping 

between inputs and outputs. This high regression accuracy 

validates the effectiveness of the training, testing, and 

validation processes, thereby reinforcing the ANN controller’s 

robustness and reliability for harmonic mitigation in the EV fast 

charging station 

 

 
Figure 13: Shows Fitness of Training Data 

 

IV. CONCLUSION 
 

This study advances the field of intelligent control for DC 

microgrids with electric vehicle (EV) fast charging integration. 

While STATCOMs are well established for voltage regulation 

and harmonic mitigation, their performance has traditionally 

relied on proportional integral (PI) controllers, which are 

limited in handling nonlinear and rapidly varying conditions. 

This work introduces an Artificial Neural Network (ANN)-

based STATCOM controller, specifically designed for DC 

micro-grids with Level-3 EV fast charging, providing enhanced 

adaptability, robustness, and dynamic response. The study also 

examine energy management and power quality independently, 

areas often treated separately.  

 

Through ANN-controlled STATCOM operation, the research 

demonstrates simultaneous improvements in voltage stability, 

harmonic suppression, and power flow optimization. 

Furthermore, a comprehensive simulation framework 

incorporating renewable energy sources (RES), energy storage 

systems (ESS), and fast charging stations has been developed, 

offering a platform for further investigation into micro-grid 

resilience and intelligent compensation strategies. Based on 

these contributions, several recommendations are proposed.  

 

Future research should explore hybrid intelligent control 

approaches, such as ANN combined with fuzzy logic or 

reinforcement learning, to further enhance performance under 

uncertain EV charging conditions. Hardware-in-the-loop (HIL) 

validation and small-scale experimental prototypes are also 

recommended to establish practical feasibility.  For industry, 

the adoption of ANN-controlled STATCOMs can mitigate 

voltage instability and power quality deterioration in EV 

charging networks.  Policymakers should incentivize the 

integration of renewable energy and advanced compensation 

technologies into EV infrastructure to enable sustainable and 

low-carbon transport electrification. 
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