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Abstract- — Landslides are a serious natural hazard that cause major social, economic, and environmental damage around the
world. To reduce their impact, it’s crucial to accurately predict where they might happen. In recent years, combining
Geographic Information Systems (GIS) with Machine Learning (ML) has greatly improved landslide prediction and mapping.
GIS helps organize and visualize complex spatial data, while ML can find hidden patterns between the factors that lead to
landslides. This review looks at different ML models used for landslide prediction, including Logistic Regression, Support
Vector Machines, Random Forest, as well as ensemble methods like Bagging, Boosting, and Stacking. It also explores newer
Deep Learning approaches. We discuss common challenges such as limited data, difficulty in understanding models, and how
to handle changing conditions. Finally, we highlight future directions like Explainable AI (XAI) and real-time monitoring. By
bringing together findings from recent studies, this review provides insights into what’s working, what’s not, and how ML and

GIS can help improve landslide risk management.

Index Terms- Landslide Prediction, Landslide Susceptibility Mapping (LSM), Machine Learning (ML), Geographic
Information Systems (GIS), Remote Sensing (RS), Ensemble Methods, Deep Learning (DL), Hazard Assessment, Risk

Mitigation, Explainable AI (XAI).

I. INTRODUCTION

Landslides are one of the most destructive natural hazards,
causing serious economic losses, environmental damage, and
human fatalities worldwide. Triggered by both natural and
human-induced factors such as heavy rainfall, earthquakes,
slope instability, and unplanned development landslides are a
major threat, especially in hilly and mountainous regions.
Traditional methods of assessing landslide risk have mostly
relied on empirical mapping and expert judgment. While these
approaches have value, they often lack spatial accuracy and
struggle to provide timely insights in fast-changing
landscapes. With climate change driving more extreme
weather and human settlements expanding into high-risk
areas, the need for accurate and timely landslide prediction is
more urgent than ever.

Accurate landslide prediction plays a vital role in reducing
risk, supporting urban planning, infrastructure development,
and disaster preparedness. Reliable susceptibility maps can
guide early warning systems and help prioritize areas for
intervention, ultimately reducing vulnerability and economic
disruption. In regions with limited resources or monitoring
systems, predictive models become even more critical for
proactive decision-making and building disaster resilience.

However, making accurate predictions isn’t simple it requires
handling complex terrain, diverse data sources, and a range of
geological and hydrological factors.

Recent advancements in machine learning and Geographic
Information Systems have greatly improved landslide
susceptibility mapping. Machine learning models like
Random Forest, Support Vector Machines, and Convolutional
Neural Networks have shown strong predictive power and the
ability to capture complex, nonlinear relationships between
landslide factors and occurrences. At the same time,
Geographic Information Systems offer a powerful platform
for mapping, integrating environmental variables, and
analysing terrain. Together, machine learning and Geographic
Information Systems provide a data-driven, scalable approach
that can adapt to different landscapes. The growing
availability of high-resolution remote sensing data has further
boosted model inputs, allowing for more precise spatial
predictions.

The main goal of this paper is to review and synthesize the
current methods used for landslide prediction with machine
learning and Geographic Information Systems. Specifically,
this study aims to:
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e Explain the core concepts and methods behind
landslide susceptibility analysis.

e Evaluate how different machine learning techniques
perform  when combined with  Geographic
Information Systems data.

e Identify key challenges and limitations in existing
approaches.

e Discuss the practical uses, scientific impact, and
future directions for this growing research area.

e Highlight the importance of data quality, availability,
and preprocessing in improving model performance.

I1. BASIC DEFINITIONS AND CONCEPTS

Landslides: Definition and Classification

A landslide is the movement of a mass of rock, debris, or earth
down a slope, driven by gravity. It’s a complex natural process
that can be triggered by events like heavy rainfall,
earthquakes, volcanic eruptions, or human activities such as
deforestation and construction. Landslides are typically
classified based on the type of material involved and how the
movement occurs. According to the widely used Varnes
classification, there are five main types of landslides: falls,
topples, slides, flows, and spreads. Each type involves
different mechanisms and factors that need to be considered
when creating prediction models. Landslides can occur
suddenly or develop slowly over time, depending on slope
stability. Early warning systems and slope monitoring
technologies are crucial in reducing landslide impacts.
Landslides also vary greatly in size, from small slope failures
to large-scale movements covering entire hillsides.

Landslide Susceptibility, Hazard, and Risk

Landslide susceptibility describes how likely a landslide is to
occur in a specific area based on local conditions and factors
that could trigger it, without considering when it might
happen. It’s a measure of spatial probability, often calculated
using statistical or machine learning methods. Landslide
hazard takes susceptibility a step further by including the
chance of the landslide happening over a certain period.
Landslide risk adds another layer by considering the potential
consequences—Ilike loss of life, economic costs, or damage to
infrastructure. In simple terms, risk is the combination of
hazard, vulnerability, and exposure. These concepts help.
prioritize areas for mitigation and planning. Risk assessments
also guide land-use decisions and emergency preparedness.
strategies.  Effective risk management depends on
continuously updated data and community awareness
programs.

Overview of Machine Learning in Geosciences

Machine learning is a field of artificial intelligence that
focuses on creating algorithms that can learn from data and
make predictions or decisions without being explicitly
programmed. In geosciences, machine learning has become a
powerful tool for analysing the complex and often nonlinear
relationships between environmental factors. Supervised
learning algorithms like Random Forest, Support Vector
Machines, Logistic Regression, and Gradient Boosting
Decision Trees are commonly used for modelling landslide
susceptibility. More recently, deep learning methods like
Convolutional Neural Networks and Recurrent Neural
Networks have been applied for tasks like image classification
and modelling changes over time. These models can handle
large, complex datasets with many variables, making them
well-suited for predicting geohazards like landslides. Machine
learning can also automate feature extraction from satellite
images, saving time and resources. Ensemble approaches that
combine multiple algorithms are increasingly popular for
improving predictive accuracy. Open-source tools and cloud
computing platforms are expanding access to machine
learning in geoscience research.

GIS and Remote Sensing Basics

Geographic Information Systems (GIS) are digital platforms
used to capture, manage, analyse, and visualize geographic or
spatial data. In landslide prediction, GIS helps combine
different data layers—such as slope, elevation, rock type, land
use, rainfall, and distance from faults—into a single
framework. These layers can be processed as raster or vector
data to serve as inputs for machine learning models. Remote
sensing involves gathering information about the Earth’s
surface from satellites or aircraft. It provides valuable data
such as vegetation indices, land cover, soil moisture, and
rainfall measurements at various scales. By combining GIS
and remote sensing, researchers can create detailed, large-
scale models of areas prone to landslides. GIS tools also
enable real-time mapping and updates following landslide
events. Remote sensing helps detect subtle changes in terrain
or vegetation that may signal slope instability. Together, GIS
and remote sensing support monitoring, early warning, and
rapid response systems for landslide management.

III. METHODOLOGY

Data Collection and Preprocessing

Landslide susceptibility modelling depends greatly on the
quality and variety of both spatial and non-spatial data.
Common sources include geological maps, topographic
maps, satellite images, meteorological records, and
historical landslide inventories. These datasets are collected
from government agencies, remote sensing platforms like
Sentinel-2 and Landsat 8, and global databases such as
NASA Earth data and USGS Earth Explorer. Preprocessing
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involves standardizing coordinate systems, converting raw
data into raster formats, reclassifying thematic layers,
handling missing data, and normalizing features to ensure
consistency across sources. Historical landslide locations are
often geo-referenced using GPS and serve as the dependent
variable in supervised machine learning models. Data
augmentation techniques may be used to increase the sample
size. Visual inspection and outlier detection are performed to
ensure data integrity. Metadata documentation is also
maintained for transparency and reproducibility.

Selection of Conditioning Factors

Conditioning factors also called causal or predictive factors
are key to identifying landslide-prone areas. These factors
include elevation, slope angle, aspect, curvature, lithology,
soil type, land use/land cover, rainfall, distance to roads,
distance to rivers, and distance to faults. Their selection is
based on expert knowledge, correlation studies, and feature
importance scores from preliminary models. Techniques like
Recursive Feature Elimination, Information Gain, and Pearson
Correlation Coefficients are commonly used to eliminate
redundant or less significant variables. Sensitivity analysis is
carried out to understand the impact of each factor. Domain-
specific thresholds are sometimes applied to discrete
continuous variables. Factor interactions are explored to
identify synergistic effects contributing to landslide
susceptibility.

M1 Models Used (Svmm, Rf, Xg Boost, Cnn)

A range of machine learning algorithms is used for
landslide susceptibility mapping:

Support Vector Machine (SVM): Effective for high-
dimensional data and nonlinear classification using kernel
functions.

Random Forest (RF): An ensemble decision tree method
known for high accuracy and resistance to overfitting.
eXtreme Gradient Boosting (XG Boost): A scalable,efficient
gradient boosting algorithm with regularization, widely used
for structured data.

Convolutional Neural Networks (CNN): Deep learning
models suited for extracting spatial features from remote
sensing images and digital elevation models.

Studies have shown that hybrid and ensemble models often
perform better than individual models, especially when
combined with spatial analysis tools. Hyperparameter tuning
is performed through grid search or Bayesian optimization to
improve performance. Feature scaling and transformation
techniques may be applied to enhance model input quality.
Comparative analysis among models is conducted to select the
optimal algorithm for specific study areas.

GIS-Based Spatial Analysis

GIS provides the spatial framework for integrating various
data layers, analysing terrain, and visualizing susceptibility
maps. Spatial interpolation methods like Inverse Distance
Weighting or Kriging are used to estimate variables such as
rainfall or soil moisture at locations without direct
measurements. Digital Elevation Model derivatives like slope,
aspect, and curvature are generated using tools in software
like ArcGIS or QGIS. The final landslide susceptibility index
is created by overlaying the weighted conditioning factors,
and susceptibility zones are classified into categories such as
very low, low, moderate, high, and very high using methods
like natural breaks or quantile classification. Geoprocessing
models are automated to streamline repeated analysis. Map
algebra techniques are used to derive composite indices.
Spatial autocorrelation analysis is performed to assess the
clustering of landslide events.

Model Validation and Evaluation Metrics

Model performance is evaluated using statistical and spatial
accuracy metrics. The most common is the Area Under the
Receiver Operating Characteristic Curve, which measures the
balance between true positive and false positive rates. Other
metrics include Precision, Recall, F1-score, Kappa coefficient,
and Overall Accuracy. Validation methods may involve k-fold
cross-validation, confusion matrix analysis, and testing with
independent datasets. Bootstrapping techniques can be
employed to estimate confidence intervals. Spatial validation
is carried out by dividing the study area into training and
testing zones. Error propagation analysis is sometimes
conducted to assess uncertainty in predictions.

IV. IDENTIFIED CHALLENGES

Data Imbalance and Inconsistency

One of the most pressing issues in landslide prediction is data
imbalance where non-landslide instances far outnumber
landslide occurrences. This skewed distribution often leads to
models biased toward predicting the majority class, resulting
in low sensitivity and poor generalization to real-world
conditions. Furthermore, landslide inventories often vary in
spatial resolution, completeness, and quality, especially across
different countries and terrains. Variability in data sources
(e.g., satellite-derived vs. ground-measured rainfall)
introduces inconsistencies that hinder model training and
reproducibility. Additional challenges arise from missing or
inaccurate historical landslide records. Differences in data
acquisition  periods  further = complicate integration.
Harmonizing multi-source datasets requires intensive
preprocessing and domain expertise. This imbalance can also
affect threshold setting in classification models. Manual re-
labelling or data augmentation techniques are often necessary
to improve minority class representation.

Overfitting and Generalization
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Machine learning models, particularly those with high
complexity like Random Forests and Deep Neural Networks,
are prone to overfitting—where models memorize training
data rather than learning generalizable patterns. Overfitting
becomes more likely when using small or highly correlated
datasets, leading to excellent training accuracy but poor
performance on unseen areas. Regularization methods, cross-
validation, and ensemble techniques are commonly used to
address this, but trade-offs between bias and variance remain a
persistent issue. Additionally, noise in input variables can
exacerbate overfitting risks. Limited availability of diverse
training samples restricts model robustness. Model pruning
and dimensionality reduction are explored to mitigate these
effects. Data augmentation strategies and dropout layers are
also being implemented in deep learning to improve
generalization. However, selecting optimal hyperparameters
remains challenging.

Limited Transferability

Landslide models are often location-specific, meaning that
models trained in one geographic region may not perform well
in others due to varying geological, climatic, and
anthropogenic factors. The lack of standardized conditioning
factor sets, differences in terrain morphology, and regional
variance in triggering mechanisms limit the ability to create
globally applicable models. This poses a barrier to model
deployment in regions lacking localized data or technical
capacity. Transfer learning approaches are being explored to
adapt models across regions. Domain adaptation remains
underutilized in geospatial contexts. Cross-region validation
studies are still relatively rare but necessary. Incorporating
global datasets may improve scalability but risks losing local
specificity. Creating hybrid models combining regional and
global features is a potential pathway.

Feature Selection and Model Explainability

While ML models can ingest large volumes of data,
identifying the most relevant conditioning factors remains a
challenge. Redundant or irrelevant features can lead to
increased noise and reduced model accuracy. Moreover,
explainability is often sacrificed in favour of predictive power
particularly in black-box models like CNNs or XG Boost
making it difficult for practitioners to interpret model outputs
or validate them against expert geological knowledge. Model-
agnostic interpretability tools like SHAP and LIME are
beginning to address this, but are not yet widely adopted in
geoscience workflows. Visualization of feature contributions is
still limited. Stakeholder trust in model outputs requires
interpretable results. Regulatory frameworks may demand
transparency for operational use. Integrating expert judgment
into feature selection workflows may enhance both
interpretability and acceptance.

Integration with Real-Time Systems

Most current ML-based landslide susceptibility models
operate on static data and offline processing. This makes it
difficult to integrate them into real-time early warning systems
that require dynamic inputs like rainfall forecasts or seismic
readings. The lack of temporal modelling capabilities in
traditional ML approaches further impedes real-time
applicability. Deep learning models with spatiotemporal
capabilities are a promising direction but require large datasets
and computational resources for deployment. Moreover,
system interoperability and access to timely sensor data
remain  major barriers in  low-resource  settings.
Communication infrastructure challenges also affect real-time
data streaming. Latency issues can compromise early warning
effectiveness. Integration with mobile or cloud-based
platforms is an emerging solution. Stakeholder coordination is
critical to ensure actionable alerts. Validation of real-time
predictions  under  operational  conditions  remains
underexplored.

V. IMPACT ANALYSIS

Scientific Contributions

The integration of machine learning (ML) with GIS in
landslide prediction has significantly advanced the geospatial
and earth sciences. These approaches have contributed to the
development of data-driven susceptibility models capable of
uncovering complex, nonlinear relationships between terrain
factors and landslide occurrences. The use of deep learning
models such as Convolutional Neural Networks (CNNs) and
hybrid ensemble techniques has further improved prediction
accuracy and spatial resolution. Moreover, explainable Al
methods are increasingly being applied to interpret feature
importance and decision boundaries, enhancing transparency
in geohazard modeling.

These scientific developments have laid the groundwork for
next-generation hazard monitoring systems. Interdisciplinary
collaborations have also emerged between geologists, data
scientists, and environmental planners. The field has
witnessed a surge in peer-reviewed publications, contributing
to global knowledge sharing. Transfer learning and automated
feature extraction are now being investigated to extend
models beyond regional boundaries.

Practical Applications

ML-GIS integrated models are now widely applied in hazard
mapping, urban planning, infrastructure design, and
emergency response systems. Governments and local
authorities use susceptibility maps to guide the placement of
critical infrastructure, assess the vulnerability of road
networks, and implement zoning laws that discourage
construction in high-risk areas. In areas with limited
resources, these models serve as a low-cost yet effective tool
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for rapid landslide assessment using remotely sensed data.
Mobile and web-based GIS platforms also allow
dissemination of risk information to communities and
responders in near-real time.

Disaster response teams rely on real-time risk alerts for rapid
mobilization. Engineering firms integrate susceptibility
models into the planning of highways, dams, and pipelines.
Environmental monitoring agencies are leveraging these tools
to track changes in slope stability over time. These models
also assist insurance companies in assessing risk zones and
planning premiums.

Influence on Policy and Planning

Landslide susceptibility assessments powered by ML have
begun influencing national and regional disaster risk reduction
(DRR) frameworks. Countries like India, Nepal, and
Indonesia have integrated such models into their geohazard
management strategies (Ullah et al., 2022). The World Bank
and UNDP have also encouraged the adoption of Al-driven
approaches for sustainable development and resilient
infrastructure planning. Predictive risk mapping enables more
proactive policy interventions, such as preemptive evacuations
and land-use regulation, thereby reducing economic and
human losses during landslide events (Ghorbanzadeh et al.,
2022).

Policy-makers now have access to evidence-based tools for
prioritizing funding and interventions. ML-driven risk scores
influence the designation of disaster-prone zones in urban
master plans. National databases and portals are incorporating
machine learning outputs to enhance transparency and public
access to hazard information.

Societal Benefits and Risk Mitigation

The societal impact of accurate landslide prediction models is
substantial. By forecasting landslide-prone areas, these
systems save lives, minimize economic disruption, and protect
environmental resources. =~ Community-level awareness
programs can use ML-generated maps to educate populations
on local risks, enhancing preparedness. Integration into early
warning systems, though still in development, promises real-
time alerts based on triggering events like intense rainfall or
seismic activity. Overall, these technologies contribute to the
broader goals of climate adaptation, sustainability, and
disaster resilience.

Public trust in scientific forecasting has increased with
accessible risk visualizations. Educational curricula and public
workshops increasingly include geohazard awareness
informed by ML tools. These systems also help allocate
emergency relief more efficiently by identifying the most
vulnerable zones in advance.

VI. FUTURE SCOPE

Use of Deep Learning and Hybrid Models

Future advancements in landslide prediction will emphasize
the integration of deep learning and hybrid modeling
approaches. Convolutional Neural Networks, Recurrent
Neural Networks, Graph Neural Networks, and Transformer-
based architectures have shown remarkable capabilities in
capturing complex spatial temporal interactions across diverse
terrains. These models can automatically learn hierarchical
features from multimodal data, reducing reliance on manual
feature engineering. Hybrid models that combine machine
learning techniques with deep learning layers or merge
physically based models with data driven techniques are
gaining popularity for their improved predictive accuracy and
adaptability across regions. There is also growing interest in
explainable deep learning frameworks aiming to balance
predictive power with interpretability to support practical
deployment in hazard management.

Real Time Forecasting and IoT Integration

The fusion of Internet of Things technologies with machine
learning represents a promising pathway for achieving real
time landslide forecasting. Deployment of low cost distributed
sensor networks monitoring rainfall, soil moisture, pore water
pressure, and seismic signals enables continuous data streams
into predictive algorithms. Edge computing and 5G networks
can support decentralized onsite data processing reducing
latency in high, risk zones. Additionally integrating real time
satellite imagery and weather data into dynamic models will
improve early warning accuracy. Future systems may also
employ automated alert dissemination via mobile apps or
sirens improving community level preparedness and response.

Advances in Remote Sensing and Geospatial Data
Emerging remote sensing platforms such as high resolution
optical satellites synthetic aperture radar UAVs and LiDAR
are expanding opportunities for detailed terrain mapping and
landslide monitoring. These technologies enable frequent
updating of Digital Elevation Models land use and land cover
maps and deformation tracking through InSAR analysis.
Combining multi temporal and multi sensor datasets enhances
the detection of subtle slope movements that may precede
catastrophic failures. Future directions may explore fusing
optical radar and hyperspectral imagery with machine learning
pipelines for improved landslide susceptibility mapping and
post event damage assessment.

Interdisciplinary Research and Stakeholder Engagement

Future progress in landslide prediction will require
interdisciplinary collaboration between geoscientists data
scientists engineers social scientists and policymakers.
Incorporating socioeconomic variables into susceptibility
models will allow for vulnerability mapping and prioritization
of mitigation efforts in at risk communities. Co developing
predictive tools with local stakeholders ensures alignment
with practical needs and improves adoption in decision
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making processes. Moreover establishing international
partnerships can foster standardized datasets shared
benchmarks and open access platforms for global landslide
monitoring. Ethical considerations such as data privacy and
equitable access to early warning technologies will also need
greater attention.

Integration of Climate Change Projections

An important emerging direction is integrating climate change
projections into landslide susceptibility models. Changes in
precipitation patterns intensity of extreme weather events and
glacier retreat are altering slope stability dynamics worldwide.
Future models should incorporate downscaled climate data
and scenario analysis to assess potential shifts in landslide
prone areas under different emission trajectories. Coupling
climate models with hydrological and geomorphological
processes will enable dynamic risk mapping under changing
environmental conditions. This integration can support
proactive planning and adaptation strategies for infrastructure
development and disaster preparedness.

VII. CONCLUSION

This review explored how machine learning and geographic
information systems are being combined for landslide
susceptibility assessment. It highlighted the importance of
selecting the right factors, cleaning and preparing spatial data
carefully, and using different machine learning models like
Support Vector Machines, Random Forests, and deep learning
approaches such as convolutional neural networks. These
models have shown good accuracy in various case studies, but
their success depends heavily on data quality, local conditions,
and how well they are validated. Challenges like imbalanced
data, overfitting, poor transferability, and lack of transparency
still need more attention.

Bringing together machine learning and GIS has transformed
landslide prediction from traditional methods to powerful
data-driven systems. Machine learning helps uncover complex
spatial patterns, while GIS makes it possible to visualize,
analyze, and combine different types of geospatial data. This
partnership allows for more detailed and scalable
susceptibility maps, improves disaster preparedness, and sets
the stage for real-time forecasting through sensor networks
and remote sensing technologies.

Landslides continue to pose a serious threat worldwide, made
worse by climate change, growing cities, and human
activities. The progress in machine learning and GIS offers a
promising path for better prediction, risk reduction, and
planning. However, moving forward will require teamwork
across disciplines, more standardized geospatial data, and a
stronger focus on models that are both interpretable and
usable in real time. Involving local communities and aligning
with policy efforts will also be key to turning scientific

advances into practical solutions that help build resilience and
sustainability.
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