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Abstract- – Landslides are a serious natural hazard that cause major social, economic, and environmental damage around the 

world. To reduce their impact, it’s crucial to accurately predict where they might happen. In recent years, combining 

Geographic Information Systems (GIS) with Machine Learning (ML) has greatly improved landslide prediction and mapping. 

GIS helps organize and visualize complex spatial data, while ML can find hidden patterns between the factors that lead to 

landslides. This review looks at different ML models used for landslide prediction, including Logistic Regression, Support 

Vector Machines, Random Forest, as well as ensemble methods like Bagging, Boosting, and Stacking. It also explores newer 

Deep Learning approaches. We discuss common challenges such as limited data, difficulty in understanding models, and how 

to handle changing conditions. Finally, we highlight future directions like Explainable AI (XAI) and real-time monitoring. By 

bringing together findings from recent studies, this review provides insights into what’s working, what’s not, and how ML and 

GIS can help improve landslide risk management. 

 

Index Terms- Landslide Prediction, Landslide Susceptibility Mapping (LSM), Machine Learning (ML), Geographic 

Information Systems (GIS), Remote Sensing (RS), Ensemble Methods, Deep Learning (DL), Hazard Assessment, Risk 

Mitigation, Explainable AI (XAI).

 

 

I. INTRODUCTION 

 
Landslides are one of the most destructive natural hazards, 

causing serious economic losses, environmental damage, and 

human fatalities worldwide. Triggered by both natural and 

human-induced factors such as heavy rainfall, earthquakes, 

slope instability, and unplanned development landslides are a 

major threat, especially in hilly and mountainous regions. 

Traditional methods of assessing landslide risk have mostly 

relied on empirical mapping and expert judgment. While these 

approaches have value, they often lack spatial accuracy and 

struggle to provide timely insights in fast-changing 

landscapes. With climate change driving more extreme 

weather and human settlements expanding into high-risk 

areas, the need for accurate and timely landslide prediction is 

more urgent than ever. 

 

Accurate landslide prediction plays a vital role in reducing 

risk, supporting urban planning, infrastructure development, 

and disaster preparedness. Reliable susceptibility maps can 

guide early warning systems and help prioritize areas for 

intervention, ultimately reducing vulnerability and economic 

disruption. In regions with limited resources or monitoring 

systems, predictive models become even more critical for 

proactive decision-making and building disaster resilience. 

However, making accurate predictions isn’t simple it requires 

handling complex terrain, diverse data sources, and a range of 

geological and hydrological factors. 

 

Recent advancements in machine learning and Geographic 

Information Systems have greatly improved landslide 

susceptibility mapping. Machine learning models like 

Random Forest, Support Vector Machines, and Convolutional 

Neural Networks have shown strong predictive power and the 

ability to capture complex, nonlinear relationships between 

landslide factors and occurrences. At the same time, 

Geographic Information Systems offer a powerful platform 

for mapping, integrating environmental variables, and 

analysing terrain. Together, machine learning and Geographic 

Information Systems provide a data-driven, scalable approach 

that can adapt to different landscapes. The growing 

availability of high-resolution remote sensing data has further 

boosted model inputs, allowing for more precise spatial 

predictions. 

 

The main goal of this paper is to review and synthesize the 

current methods used for landslide prediction with machine 

learning and Geographic Information Systems. Specifically, 

this study aims to: 
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 Explain the core concepts and methods behind 

landslide susceptibility analysis. 

 Evaluate how different machine learning techniques 

perform when combined with Geographic 

Information Systems data. 

 Identify key challenges and limitations in existing 

approaches. 

 Discuss the practical uses, scientific impact, and 

future directions for this growing research area. 

 Highlight the importance of data quality, availability, 

and preprocessing in improving model performance. 

  

 

II. BASIC DEFINITIONS AND CONCEPTS 

 
Landslides: Definition and Classification 

A landslide is the movement of a mass of rock, debris, or earth 

down a slope, driven by gravity. It’s a complex natural process 

that can be triggered by events like heavy rainfall, 

earthquakes, volcanic eruptions, or human activities such as 

deforestation and construction. Landslides are typically 

classified based on the type of material involved and how the 

movement occurs. According to the widely used Varnes 

classification, there are five main types of landslides: falls, 

topples, slides, flows, and spreads. Each type involves 

different mechanisms and factors that need to be considered 

when creating prediction models. Landslides can occur 

suddenly or develop slowly over time, depending on slope 

stability. Early warning systems and slope monitoring 

technologies are crucial in reducing landslide impacts. 

Landslides also vary greatly in size, from small slope failures 

to large-scale movements covering entire hillsides. 

 

Landslide Susceptibility, Hazard, and Risk 

Landslide susceptibility describes how likely a landslide is to 

occur in a specific area based on local conditions and factors 

that could trigger it, without considering when it might 

happen. It’s a measure of spatial probability, often calculated 

using statistical or machine learning methods. Landslide 

hazard takes susceptibility a step further by including the 

chance of the landslide happening over a certain period. 

Landslide risk adds another layer by considering the potential 

consequences—like loss of life, economic costs, or damage to 

infrastructure. In simple terms, risk is the combination of 

hazard, vulnerability, and exposure. These concepts help 

prioritize areas for mitigation and planning. Risk assessments 

also guide land-use decisions and emergency preparedness 

strategies. Effective risk management depends on 

continuously updated data and community awareness 

programs. 

 

Overview of Machine Learning in Geosciences 

 

Machine learning is a field of artificial intelligence that 

focuses on creating algorithms that can learn from data and 

make predictions or decisions without being explicitly 

programmed. In geosciences, machine learning has become a 

powerful tool for analysing the complex and often nonlinear 

relationships between environmental factors. Supervised 

learning algorithms like Random Forest, Support Vector 

Machines, Logistic Regression, and Gradient Boosting 

Decision Trees are commonly used for modelling landslide 

susceptibility. More recently, deep learning methods like 

Convolutional Neural Networks and Recurrent Neural 

Networks have been applied for tasks like image classification 

and modelling changes over time. These models can handle 

large, complex datasets with many variables, making them 

well-suited for predicting geohazards like landslides. Machine 

learning can also automate feature extraction from satellite 

images, saving time and resources. Ensemble approaches that 

combine multiple algorithms are increasingly popular for 

improving predictive accuracy. Open-source tools and cloud 

computing platforms are expanding access to machine 

learning in geoscience research. 

 

GIS and Remote Sensing Basics 

 

Geographic Information Systems (GIS) are digital platforms 

used to capture, manage, analyse, and visualize geographic or 

spatial data. In landslide prediction, GIS helps combine 

different data layers—such as slope, elevation, rock type, land 

use, rainfall, and distance from faults—into a single 

framework. These layers can be processed as raster or vector 

data to serve as inputs for machine learning models. Remote 

sensing involves gathering information about the Earth’s 

surface from satellites or aircraft. It provides valuable data 

such as vegetation indices, land cover, soil moisture, and 

rainfall measurements at various scales. By combining GIS 

and remote sensing, researchers can create detailed, large-

scale models of areas prone to landslides. GIS tools also 

enable real-time mapping and updates following landslide 

events. Remote sensing helps detect subtle changes in terrain 

or vegetation that may signal slope instability. Together, GIS 

and remote sensing support monitoring, early warning, and 

rapid response systems for landslide management. 

 

III. METHODOLOGY 
 

 Data Collection and Preprocessing 

 Landslide susceptibility modelling depends greatly on the 

quality and variety of both spatial and non-spatial data. 

Common sources include geological maps, topographic 

maps, satellite images, meteorological records, and 

historical landslide inventories. These datasets are collected 

from government agencies, remote sensing platforms like 

Sentinel-2 and Landsat 8, and global databases such as 

NASA Earth data and USGS Earth Explorer. Preprocessing 
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involves standardizing coordinate systems, converting raw 

data into raster formats, reclassifying thematic layers, 

handling missing data, and normalizing features to ensure 

consistency across sources. Historical landslide locations are 

often geo-referenced using GPS and serve as the dependent 

variable in supervised machine learning models. Data 

augmentation techniques may be used to increase the sample 

size. Visual inspection and outlier detection are performed to 

ensure data integrity. Metadata documentation is also 

maintained for transparency and reproducibility. 

 

Selection of Conditioning Factors 

Conditioning factors also called causal or predictive factors 

are key to identifying landslide-prone areas. These factors 

include elevation, slope angle, aspect, curvature, lithology, 

soil type, land use/land cover, rainfall, distance to roads, 

distance to rivers, and distance to faults. Their selection is 

based on expert knowledge, correlation studies, and feature 

importance scores from preliminary models. Techniques like 

Recursive Feature Elimination, Information Gain, and Pearson 

Correlation Coefficients are commonly used to eliminate 

redundant or less significant variables. Sensitivity analysis is 

carried out to understand the impact of each factor. Domain-

specific thresholds are sometimes applied to discrete 

continuous variables. Factor interactions are explored to 

identify synergistic effects contributing to landslide 

susceptibility. 

 

Ml Models Used (Svm, Rf, Xg Boost, Cnn) 

 

A range of machine learning algorithms is used for 

landslide susceptibility mapping: 
 

Support Vector Machine (SVM): Effective for high-

dimensional data and nonlinear classification using kernel 

functions. 

Random Forest (RF): An ensemble decision tree method 

known for high accuracy and resistance to overfitting. 

eXtreme Gradient Boosting (XG Boost): A scalable,efficient 

gradient boosting algorithm with regularization, widely used 

for structured data. 

Convolutional Neural Networks (CNN): Deep learning 

models suited for extracting spatial features from remote 

sensing images and digital elevation models. 

Studies have shown that hybrid and ensemble models often 

perform better than individual models, especially when 

combined with spatial analysis tools. Hyperparameter tuning 

is performed through grid search or Bayesian optimization to 

improve performance. Feature scaling and transformation 

techniques may be applied to enhance model input quality. 

Comparative analysis among models is conducted to select the 

optimal algorithm for specific study areas. 

 

GIS-Based Spatial Analysis 

GIS provides the spatial framework for integrating various 

data layers, analysing terrain, and visualizing susceptibility 

maps. Spatial interpolation methods like Inverse Distance 

Weighting or Kriging are used to estimate variables such as 

rainfall or soil moisture at locations without direct 

measurements. Digital Elevation Model derivatives like slope, 

aspect, and curvature are generated using tools in software 

like ArcGIS or QGIS. The final landslide susceptibility index 

is created by overlaying the weighted conditioning factors, 

and susceptibility zones are classified into categories such as 

very low, low, moderate, high, and very high using methods 

like natural breaks or quantile classification. Geoprocessing 

models are automated to streamline repeated analysis. Map 

algebra techniques are used to derive composite indices. 

Spatial autocorrelation analysis is performed to assess the 

clustering of landslide events. 

 

Model Validation and Evaluation Metrics 

Model performance is evaluated using statistical and spatial 

accuracy metrics. The most common is the Area Under the 

Receiver Operating Characteristic Curve, which measures the 

balance between true positive and false positive rates. Other 

metrics include Precision, Recall, F1-score, Kappa coefficient, 

and Overall Accuracy. Validation methods may involve k-fold 

cross-validation, confusion matrix analysis, and testing with 

independent datasets. Bootstrapping techniques can be 

employed to estimate confidence intervals. Spatial validation 

is carried out by dividing the study area into training and 

testing zones. Error propagation analysis is sometimes 

conducted to assess uncertainty in predictions. 

 

IV. IDENTIFIED CHALLENGES 
 

Data Imbalance and Inconsistency 

One of the most pressing issues in landslide prediction is data 

imbalance where non-landslide instances far outnumber 

landslide occurrences. This skewed distribution often leads to 

models biased toward predicting the majority class, resulting 

in low sensitivity and poor generalization to real-world 

conditions. Furthermore, landslide inventories often vary in 

spatial resolution, completeness, and quality, especially across 

different countries and terrains. Variability in data sources 

(e.g., satellite-derived vs. ground-measured rainfall) 

introduces inconsistencies that hinder model training and 

reproducibility. Additional challenges arise from missing or 

inaccurate historical landslide records. Differences in data 

acquisition periods further complicate integration. 

Harmonizing multi-source datasets requires intensive 

preprocessing and domain expertise. This imbalance can also 

affect threshold setting in classification models. Manual re-

labelling or data augmentation techniques are often necessary 

to improve minority class representation. 

 

Overfitting and Generalization 
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Machine learning models, particularly those with high 

complexity like Random Forests and Deep Neural Networks, 

are prone to overfitting—where models memorize training 

data rather than learning generalizable patterns. Overfitting 

becomes more likely when using small or highly correlated 

datasets, leading to excellent training accuracy but poor 

performance on unseen areas. Regularization methods, cross-

validation, and ensemble techniques are commonly used to 

address this, but trade-offs between bias and variance remain a 

persistent issue. Additionally, noise in input variables can 

exacerbate overfitting risks. Limited availability of diverse 

training samples restricts model robustness. Model pruning 

and dimensionality reduction are explored to mitigate these 

effects. Data augmentation strategies and dropout layers are 

also being implemented in deep learning to improve 

generalization. However, selecting optimal hyperparameters 

remains challenging. 

 

Limited Transferability 
Landslide models are often location-specific, meaning that 

models trained in one geographic region may not perform well 

in others due to varying geological, climatic, and 

anthropogenic factors. The lack of standardized conditioning 

factor sets, differences in terrain morphology, and regional 

variance in triggering mechanisms limit the ability to create 

globally applicable models. This poses a barrier to model 

deployment in regions lacking localized data or technical 

capacity. Transfer learning approaches are being explored to 

adapt models across regions. Domain adaptation remains 

underutilized in geospatial contexts. Cross-region validation 

studies are still relatively rare but necessary. Incorporating 

global datasets may improve scalability but risks losing local 

specificity. Creating hybrid models combining regional and 

global features is a potential pathway. 

 

Feature Selection and Model Explainability 

While ML models can ingest large volumes of data, 

identifying the most relevant conditioning factors remains a 

challenge. Redundant or irrelevant features can lead to 

increased noise and reduced model accuracy. Moreover, 

explainability is often sacrificed in favour of predictive power 

particularly in black-box models like CNNs or XG Boost 

making it difficult for practitioners to interpret model outputs 

or validate them against expert geological knowledge. Model-

agnostic interpretability tools like SHAP and LIME are 

beginning to address this, but are not yet widely adopted in 

geoscience workflows.Visualization of feature contributions is 

still limited. Stakeholder trust in model outputs requires 

interpretable results. Regulatory frameworks may demand 

transparency for operational use. Integrating expert judgment 

into feature selection workflows may enhance both 

interpretability and acceptance. 

 

 Integration with Real-Time Systems 

 

Most current ML-based landslide susceptibility models 

operate on static data and offline processing. This makes it 

difficult to integrate them into real-time early warning systems 

that require dynamic inputs like rainfall forecasts or seismic 

readings. The lack of temporal modelling capabilities in 

traditional ML approaches further impedes real-time 

applicability. Deep learning models with spatiotemporal 

capabilities are a promising direction but require large datasets 

and computational resources for deployment. Moreover, 

system interoperability and access to timely sensor data 

remain major barriers in low-resource settings. 

Communication infrastructure challenges also affect real-time 

data streaming. Latency issues can compromise early warning 

effectiveness. Integration with mobile or cloud-based 

platforms is an emerging solution. Stakeholder coordination is 

critical to ensure actionable alerts. Validation of real-time 

predictions under operational conditions remains 

underexplored. 

 

 

V. IMPACT ANALYSIS 
 

Scientific Contributions 

The integration of machine learning (ML) with GIS in 

landslide prediction has significantly advanced the geospatial 

and earth sciences. These approaches have contributed to the 

development of data-driven susceptibility models capable of 

uncovering complex, nonlinear relationships between terrain 

factors and landslide occurrences. The use of deep learning 

models such as Convolutional Neural Networks (CNNs) and 

hybrid ensemble techniques has further improved prediction 

accuracy and spatial resolution. Moreover, explainable AI 

methods are increasingly being applied to interpret feature 

importance and decision boundaries, enhancing transparency 

in geohazard modeling. 

 

These scientific developments have laid the groundwork for 

next-generation hazard monitoring systems. Interdisciplinary 

collaborations have also emerged between geologists, data 

scientists, and environmental planners. The field has 

witnessed a surge in peer-reviewed publications, contributing 

to global knowledge sharing. Transfer learning and automated 

feature extraction are now being investigated to extend 

models beyond regional boundaries. 

 

Practical Applications 
ML-GIS integrated models are now widely applied in hazard 

mapping, urban planning, infrastructure design, and 

emergency response systems. Governments and local 

authorities use susceptibility maps to guide the placement of 

critical infrastructure, assess the vulnerability of road 

networks, and implement zoning laws that discourage 

construction in high-risk areas. In areas with limited 

resources, these models serve as a low-cost yet effective tool 
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for rapid landslide assessment using remotely sensed data. 

Mobile and web-based GIS platforms also allow 

dissemination of risk information to communities and 

responders in near-real time. 

 

Disaster response teams rely on real-time risk alerts for rapid 

mobilization. Engineering firms integrate susceptibility 

models into the planning of highways, dams, and pipelines. 

Environmental monitoring agencies are leveraging these tools 

to track changes in slope stability over time. These models 

also assist insurance companies in assessing risk zones and 

planning premiums. 

 

Influence on Policy and Planning 

Landslide susceptibility assessments powered by ML have 

begun influencing national and regional disaster risk reduction 

(DRR) frameworks. Countries like India, Nepal, and 

Indonesia have integrated such models into their geohazard 

management strategies (Ullah et al., 2022). The World Bank 

and UNDP have also encouraged the adoption of AI-driven 

approaches for sustainable development and resilient 

infrastructure planning. Predictive risk mapping enables more 

proactive policy interventions, such as preemptive evacuations 

and land-use regulation, thereby reducing economic and 

human losses during landslide events (Ghorbanzadeh et al., 

2022). 

Policy-makers now have access to evidence-based tools for 

prioritizing funding and interventions. ML-driven risk scores 

influence the designation of disaster-prone zones in urban 

master plans. National databases and portals are incorporating 

machine learning outputs to enhance transparency and public 

access to hazard information. 

 

Societal Benefits and Risk Mitigation 

The societal impact of accurate landslide prediction models is 

substantial. By forecasting landslide-prone areas, these 

systems save lives, minimize economic disruption, and protect 

environmental resources. Community-level awareness 

programs can use ML-generated maps to educate populations 

on local risks, enhancing preparedness. Integration into early 

warning systems, though still in development, promises real-

time alerts based on triggering events like intense rainfall or 

seismic activity. Overall, these technologies contribute to the 

broader goals of climate adaptation, sustainability, and 

disaster resilience. 

Public trust in scientific forecasting has increased with 

accessible risk visualizations. Educational curricula and public 

workshops increasingly include geohazard awareness 

informed by ML tools. These systems also help allocate 

emergency relief more efficiently by identifying the most 

vulnerable zones in advance. 

 

VI. FUTURE SCOPE 
 

Use of Deep Learning and Hybrid Models 

 

Future advancements in landslide prediction will emphasize 

the integration of deep learning and hybrid modeling 

approaches. Convolutional Neural Networks, Recurrent 

Neural Networks, Graph Neural Networks, and Transformer-

based architectures have shown remarkable capabilities in 

capturing complex spatial temporal interactions across diverse 

terrains. These models can automatically learn hierarchical 

features from multimodal data, reducing reliance on manual 

feature engineering. Hybrid models that combine machine 

learning techniques with deep learning layers or merge 

physically based models with data driven techniques are 

gaining popularity for their improved predictive accuracy and 

adaptability across regions. There is also growing interest in 

explainable deep learning frameworks aiming to balance 

predictive power with interpretability to support practical 

deployment in hazard management. 

 

Real Time Forecasting and IoT Integration 

The fusion of Internet of Things technologies with machine 

learning represents a promising pathway for achieving real 

time landslide forecasting. Deployment of low cost distributed 

sensor networks monitoring rainfall, soil moisture, pore water 

pressure, and seismic signals enables continuous data streams 

into predictive algorithms. Edge computing and 5G networks 

can support decentralized onsite data processing reducing 

latency in high, risk zones. Additionally integrating real time 

satellite imagery and weather data into dynamic models will 

improve early warning accuracy. Future systems may also 

employ automated alert dissemination via mobile apps or 

sirens improving community level preparedness and response. 

 

Advances in Remote Sensing and Geospatial Data 

Emerging remote sensing platforms such as high resolution 

optical satellites synthetic aperture radar UAVs and LiDAR 

are expanding opportunities for detailed terrain mapping and 

landslide monitoring. These technologies enable frequent 

updating of Digital Elevation Models land use and land cover 

maps and deformation tracking through InSAR analysis. 

Combining multi temporal and multi sensor datasets enhances 

the detection of subtle slope movements that may precede 

catastrophic failures. Future directions may explore fusing 

optical radar and hyperspectral imagery with machine learning 

pipelines for improved landslide susceptibility mapping and 

post event damage assessment. 

 

Interdisciplinary Research and Stakeholder Engagement 

Future progress in landslide prediction will require 

interdisciplinary collaboration between geoscientists data 

scientists engineers social scientists and policymakers. 

Incorporating socioeconomic variables into susceptibility 

models will allow for vulnerability mapping and prioritization 

of mitigation efforts in at risk communities. Co developing 

predictive tools with local stakeholders ensures alignment 

with practical needs and improves adoption in decision 
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making processes. Moreover establishing international 

partnerships can foster standardized datasets shared 

benchmarks and open access platforms for global landslide 

monitoring. Ethical considerations such as data privacy and 

equitable access to early warning technologies will also need 

greater attention. 

 

Integration of Climate Change Projections 
An important emerging direction is integrating climate change 

projections into landslide susceptibility models. Changes in 

precipitation patterns intensity of extreme weather events and 

glacier retreat are altering slope stability dynamics worldwide. 

Future models should incorporate downscaled climate data 

and scenario analysis to assess potential shifts in landslide 

prone areas under different emission trajectories. Coupling 

climate models with hydrological and geomorphological 

processes will enable dynamic risk mapping under changing 

environmental conditions. This integration can support 

proactive planning and adaptation strategies for infrastructure 

development and disaster preparedness. 

 

VII. CONCLUSION 
 

This review explored how machine learning and geographic 

information systems are being combined for landslide 

susceptibility assessment. It highlighted the importance of 

selecting the right factors, cleaning and preparing spatial data 

carefully, and using different machine learning models like 

Support Vector Machines, Random Forests, and deep learning 

approaches such as convolutional neural networks. These 

models have shown good accuracy in various case studies, but 

their success depends heavily on data quality, local conditions, 

and how well they are validated. Challenges like imbalanced 

data, overfitting, poor transferability, and lack of transparency 

still need more attention. 

 

Bringing together machine learning and GIS has transformed 

landslide prediction from traditional methods to powerful 

data-driven systems. Machine learning helps uncover complex 

spatial patterns, while GIS makes it possible to visualize, 

analyze, and combine different types of geospatial data. This 

partnership allows for more detailed and scalable 

susceptibility maps, improves disaster preparedness, and sets 

the stage for real-time forecasting through sensor networks 

and remote sensing technologies. 

 

Landslides continue to pose a serious threat worldwide, made 

worse by climate change, growing cities, and human 

activities. The progress in machine learning and GIS offers a 

promising path for better prediction, risk reduction, and 

planning. However, moving forward will require teamwork 

across disciplines, more standardized geospatial data, and a 

stronger focus on models that are both interpretable and 

usable in real time. Involving local communities and aligning 

with policy efforts will also be key to turning scientific 

advances into practical solutions that help build resilience and 

sustainability. 
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