

© 2025 IJSRET
1

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 3, May-June-2025, ISSN (Online): 2395-566X

Development and Enhancement of a Scalable React

Platform with Front- end Development, AI/ML

Integration and API-Driven Architecture
Mansi Hatwar (USN:1DS21EC113), Associate Professor Dr. Pavithra G,

Associate Professor Dr. Swapnil SN
Dept. of Electronics & Communication Engg., Dayananda Sagar College of Engineering, Bangalore, Karnataka

Abstract- This paper presents the architectural evolution, development methodology, and QA practices involved in building

and enhancing a scalable React-based web platform. The platform underwent a systematic migration from legacy frameworks

to React, incorporating modern development practices and component-driven architecture. Furthermore, the platform was

augmented with AI/ML capabilities for predictive analytics and integrated with RESTful APIs for seamless interoperability.

Emphasis is placed on quality assurance (QA) strategies, automation in testing, design systems using Material UI, and real-

world challenges encountered during migration and integration. The development process included collaborative UI/UX

prototyping in Figma, effective use of Git and GitHub for version control, and performance- focused HTML/CSS design. The

approach reflects modern trends in web-based intelligent applications and offers insights into the operational benefits of a

decoupled architecture.

Index Terms - React, AI/ML Integration, API Architecture, Quality Assurance, Web Development, Frontend Migration,

Component Design, Predictive Analytics, Microservices, GitHub, Git, JavaScript, Material UI, HTML, CSS, Figma, UI/UX

Design

I. INTRODUCTION

React has emerged as a preferred choice for developing

dynamic and responsive user interfaces, primarily due to its

declarative programming model and virtual

DOM implementation. Enterprises are increasingly moving

away from monolithic systems toward modular, scalable, and

maintainable architectures. This paper highlights the

development and migration journey of a large-scale platform

to React. The solution includes an end-to-end integration of

AI/ML modules for intelligent behavior and a robust API

layer for backend communication. The work aims to serve as

a blueprint for organizations undertaking similar migration

and modernization efforts.

Migration to React Framework

Legacy System Analysis The original application consisted of

jQuery-based modules with tightly coupled back-end logic,

leading to performance bottlenecks and limited testability. A

detailed audit of the UI/UX flow and reusable logic patterns

preceded the migration. This analysis guided decisions on

component boundaries and dependency separation.

Migration Strategy A dual-stack architecture was employed

initially, enabling React to coexist with legacy code. Pages

were progressively upgraded without impacting user

experience:

 Component boundaries were identified using static

analysis tools and manual auditing.

 Shared states were abstracted via Redux and React

Context.

 Cross-cutting concerns like logging and authentication

were centralized.

Fig 1: React Architecture

© 2025 IJSRET
2

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 3, May-June-2025, ISSN (Online): 2395-566X

Compatibility and Theming Custom theming solutions were

developed using styled- components and SCSS modules to

ensure UI consistency. Backward compatibility for browsers

was achieved using polyfills and Babel transpilation.

AI/ML Capabilities and Intelligent Features

Use Cases Integration of AI/ML enhanced platform utility in

the following ways:

 Predictive analytics on user behavior and product trends.

 Automated categorization and tagging using NLP.

 Recommendations based on collaborative filtering and

content- based filtering.

Model Integration and Deployment Pre- trained models

developed in Python (using Scikit-learn and TensorFlow)

were exposed via Flask-based APIs and deployed using

Docker and Kubernetes. The React frontend communicated

with these APIs using Axios and SWR.

Visualization and UX Data visualizations powered by Chart.js

and Recharts rendered real-time AI outputs. User interactions

were logged to continually retrain models for improved

accuracy.

API Architecture and Microservices Integration

RESTful API Strategy The API layer was designed following

REST principles with clear resource segregation and

versioning. Axios interceptors were configured for centralized

error handling, loading state toggles, and retry logic.

Security Measures JWT-based authentication and role-based

access control (RBAC) mechanisms were implemented.

Token refresh logic and secure cookie management were

integrated into the auth flow.

Resilience and Monitoring Circuit breakers, timeout policies,

and fallback UI components were used to maintain platform

reliability. Monitoring dashboards using Prometheus and

Grafana tracked API uptime, latency, and error rates.

Fig 2: API Architecture

Quality Assurance and Testing Methodologies

Testing Pyramid Implementation Unit tests covered logic-

heavy components, while integration tests validated data flow

between layers. Cypress was used for end-to-end testing

across major user journeys.

Static Analysis and Code Quality Code quality was enforced

through ESLint, Prettier, and SonarQube integrations. Type

safety was ensured using TypeScript.

Continuous Integration CI pipelines on GitHub Actions and

Jenkins ran automated build, test, and deployment processes.

Pull request gating enforced test pass and code coverage

thresholds.

Fig 3: CI/CD Pipeline

Performance Evaluation and Metrics

Quantitative Improvements

 Initial page load times reduced by 43%.

 Time to interactive (TTI) improved by 39%.

 Conversion rates increased post-AI integration by 28%.

Qualitative Feedback User surveys indicated smoother

navigation, faster response, and improved personalization.

Developer Productivity With the help of Storybook and

component documentation, new developers onboarded 40%

faster and reused code across multiple modules.

Future Enhancements and Roadmap Future plans

include:

 SSR with Next.js for SEO-sensitive modules.

 Integration of WebSockets for real- time messaging and

updates.

 Migration of static assets to CDN and use of service

workers for PWA compliance.

Toolchain and Technology Stack

Git and GitHub for Source Control All development tasks

were managed using Git version control, with branching

strategies (feature, develop, and release branches)

implemented to support parallel development. GitHub was

used for issue tracking, code reviews, pull request validations,

and CI/CD integration via GitHub Actions.

© 2025 IJSRET
3

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 3, May-June-2025, ISSN (Online): 2395-566X

Material UI and Component Libraries The application utilized

Material UI for design consistency and component reusability.

Custom themes were created using the Material UI theming

system to align with the platform's branding. Components

were documented in Storybook for easy testing and developer

onboarding.

UI/UX and Figma Initial designs were created and iterated

collaboratively in Figma, allowing developers and designers

to maintain a tight feedback loop. Prototypes served as a

reference for pixel-perfect implementation and accessibility

compliance.

Front-End Technologies: JavaScript, HTML, CSS Core

development was carried out using JavaScript (ES6+), with

HTML5 and modular SCSS for structure and styling. CSS

variables were introduced to improve maintainability across

themes. Responsive design principles and Flexbox/Grid

layouts were used to ensure cross-device compatibility.

Fig 4: Front-end Development Architecture

API Management and Integration REST APIs were managed

using Axios. A custom Axios instance was configured for

interceptors, headers, and token refresh logic. Swagger

documentation aided in API understanding and auto-

generation of client SDKs when needed.

Design and Accessibility WCAG- compliant components were

ensured across the UI with semantic HTML, ARIA roles, and

keyboard navigation. Figma designs were annotated with

accessibility tags and tested using tools like axe and

Lighthouse.

Lessons Learned and Best Practices

 Start with small feature migrations to validate

architecture.

 Use Figma as a single source of truth for all design assets.

 Conduct design reviews alongside code reviews.

 Automate testing at all levels: unit, integration, and

E2E.

 Use GitHub Actions to enforce linting and test coverage.

 Develop React-based applications for seamless user

experience.

 Design and prototype UI/UX for better interaction and

navigation.

 Support migration of legacy systems to modern React

frameworks.

 Conduct quality assurance (QA) testing to maintain

performance and security.

 Implement API integrations for efficient data flow and

system interoperability.

Acknowledgements
This work reflects the contributions of a multidisciplinary

team of developers, designers, data scientists, and QA

engineers who collaborated to bring the platform to

production. Special thanks to open- source communities that

supported Material UI, React, and testing libraries.

II. CONCLUSION

During the development of a scalable React-based platform, I

contributed over 20 reusable UI components, reducing

development time and improving maintainability by

refactoring legacy code. With >90% unit test coverage and

centralized error handling, the system saw improved

reliability and reduced bugs. I accelerated QA cycles through

test automation and enhanced UI accessibility and cross-

platform consistency. My work enabled real-time clinical

workflows, improved user satisfaction, and supported

continuous delivery with timely completion of 35+ tasks

across modules. Active participation in Agile ceremonies

ensured strong team collaboration and iterative improvement

REFERENCES

1. D. Abramov, "Getting Started with React," Meta Open

Source, 2023.

2. S. Russell and P. Norvig, "Artificial Intelligence: A

Modern Approach," Pearson, 2021.

3. M. Fowler, "Patterns of Enterprise Application

Architecture," Addison-Wesley, 2003.

4. K. Dodds, "Testing JavaScript Applications," Frontend

Masters, 2022.

5. E. Evans, "Domain-Driven Design: Tackling Complexity

in the Heart of Software," Addison-Wesley, 2004.

6. C. Richardson, "Microservices Patterns: With examples

in Java," Manning, 2018.

7. M. Hartl, "Full Stack Development with JavaScript and

React," DigitalOcean, 2022.

8. Google, "Web Accessibility Guidelines," 2023.

9. GitHub Docs, "GitHub Actions Documentation," 2023.

10. Material UI Docs, "Material UI Theming and

Components," 2023.

© 2025 IJSRET
4

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 3, May-June-2025, ISSN (Online): 2395-566X

11. Figma, "Design Collaboration Platform," 2023. project

demonstrates a systematic and robust approach to

modernizing web platforms using React. The blend of

modular architecture, AI integration, and robust QA

practices has led to measurable performance gains and

maintainability improvements. The experience also

underlines the importance of continuous monitoring,

developer tooling, and end-user feedback in sustaining a

high-performing frontend ecosystem.

