International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 3, May-June-2025, ISSN (Online): 2395-566X

Development and Enhancement of a Scalable React
Platform with Front- end Development, AI/ML

Integration and API-Driven Architecture

Mansi Hatwar (USN:1DS21EC113), Associate Professor Dr. Pavithra G,

Associate Professor Dr. Swapnil SN
Dept. of Electronics & Communication Engg., Dayananda Sagar College of Engineering, Bangalore, Karnataka

Abstract- This paper presents the architectural evolution, development methodology, and QA practices involved in building

and enhancing a scalable React-based web platform. The platform underwent a systematic migration from legacy frameworks

to React, incorporating modern development practices and component-driven architecture. Furthermore, the platform was

augmented with AI/ML capabilities for predictive analytics and integrated with RESTful APIs for seamless interoperability.

Emphasis is placed on quality assurance (QA) strategies, automation in testing, design systems using Material Ul, and real-

world challenges encountered during migration and integration. The development process included collaborative UI/UX

prototyping in Figma, effective use of Git and GitHub for version control, and performance- focused HTML/CSS design. The

approach reflects modern trends in web-based intelligent applications and offers insights into the operational benefits of a

decoupled architecture.

Index Terms - React, AI/ML Integration, API Architecture, Quality Assurance, Web Development, Frontend Migration,

Component Design, Predictive Analytics, Microservices, GitHub, Git, JavaScript, Material Ul, HTML, CSS, Figma, UI/UX

Design

I. INTRODUCTION

React has emerged as a preferred choice for developing
dynamic and responsive user interfaces, primarily due to its
declarative programming model and virtual

DOM implementation. Enterprises are increasingly moving
away from monolithic systems toward modular, scalable, and
maintainable architectures. This paper highlights the
development and migration journey of a large-scale platform
to React. The solution includes an end-to-end integration of
AI/ML modules for intelligent behavior and a robust API
layer for backend communication. The work aims to serve as
a blueprint for organizations undertaking similar migration
and modernization efforts.

Migration to React Framework

Legacy System Analysis The original application consisted of
jQuery-based modules with tightly coupled back-end logic,
leading to performance bottlenecks and limited testability. A
detailed audit of the UI/UX flow and reusable logic patterns
preceded the migration. This analysis guided decisions on
component boundaries and dependency separation.

Migration Strategy A dual-stack architecture was employed

initially, enabling React to coexist with legacy code. Pages

were progressively upgraded without impacting user

experience:

e Component boundaries were identified using static
analysis tools and manual auditing.

e Shared states were abstracted via Redux and React
Context.

e Cross-cutting concerns like logging and authentication
were centralized.

Reoct createEloment i >
reevoaalil
L’-..Mup'r. l s
User Interfoce f
Tu.,-u upon
2 = s
(Modbied) —> “n‘z‘;‘:";‘”“,’"‘) VormiOom, |
Buald upon l
Updates
.C::pnnl 3 M- ;.,-‘..‘., A_ '_1
Buld spen S

Fig 1: React Architecture

© 2025 USRET

1

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 3, May-June-2025, ISSN (Online): 2395-566X

Compatibility and Theming Custom theming solutions were
developed using styled- components and SCSS modules to
ensure Ul consistency. Backward compatibility for browsers
was achieved using polyfills and Babel transpilation.

AI/ML Capabilities and Intelligent Features

Use Cases Integration of AI/ML enhanced platform utility in
the following ways:

e Predictive analytics on user behavior and product trends.
Automated categorization and tagging using NLP.
Recommendations based on collaborative filtering and
content- based filtering.

Model Integration and Deployment Pre- trained models
developed in Python (using Scikit-learn and TensorFlow)
were exposed via Flask-based APIs and deployed using
Docker and Kubernetes. The React frontend communicated
with these APIs using Axios and SWR.

Visualization and UX Data visualizations powered by Chart.js
and Recharts rendered real-time Al outputs. User interactions
were logged to continually retrain models for improved
accuracy.

API Architecture and Microservices Integration

RESTful API Strategy The API layer was designed following
REST principles with clear resource segregation and
versioning. Axios interceptors were configured for centralized
error handling, loading state toggles, and retry logic.

Security Measures JWT-based authentication and role-based
access control (RBAC) mechanisms were implemented.
Token refresh logic and secure cookie management were
integrated into the auth flow.

Resilience and Monitoring Circuit breakers, timeout policies,
and fallback UI components were used to maintain platform
reliability. Monitoring dashboards using Prometheus and
Grafana tracked API uptime, latency, and error rates.

Interoal, Parioee &
Thrd Party Deweloper
Conamntes

AP! Portal

[} Representation

<§O Orchestration

Acchtectunal Layeny

Fig 2: API Architecture

Applcaies

Quality Assurance and Testing Methodologies

Testing Pyramid Implementation Unit tests covered logic-
heavy components, while integration tests validated data flow
between layers. Cypress was used for end-to-end testing
across major user journeys.

Static Analysis and Code Quality Code quality was enforced
through ESLint, Prettier, and SonarQube integrations. Type
safety was ensured using TypeScript.

Continuous Integration CI pipelines on GitHub Actions and
Jenkins ran automated build, test, and deployment processes.
Pull request gating enforced test pass and code coverage
thresholds.

BUKD WNIT iNTEGRATION
TESTS TESTS

€O MPELINE

C) PLPELINE

RELATID CODE

Fig 3: CI/CD Pipeline

Performance Evaluation and Metrics

Quantitative Improvements

o Initial page load times reduced by 43%.

Time to interactive (TTI) improved by 39%.
Conversion rates increased post-Al integration by 28%.

Qualitative Feedback User surveys indicated smoother
navigation, faster response, and improved personalization.

Developer Productivity With the help of Storybook and
component documentation, new developers onboarded 40%
faster and reused code across multiple modules.

Future Enhancements
include:

SSR with Next.js for SEO-sensitive modules.

Integration of WebSockets for real- time messaging and
updates.

Migration of static assets to CDN and use of service
workers for PWA compliance.

and Roadmap Future plans

Toolchain and Technology Stack

Git and GitHub for Source Control All development tasks
were managed using Git version control, with branching
strategies (feature, develop, and release branches)
implemented to support parallel development. GitHub was
used for issue tracking, code reviews, pull request validations,
and CI/CD integration via GitHub Actions.

© 2025 JSRET

2

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 3, May-June-2025, ISSN (Online): 2395-566X

Material Ul and Component Libraries The application utilized
Material Ul for design consistency and component reusability.
Custom themes were created using the Material Ul theming
system to align with the platform's branding. Components
were documented in Storybook for easy testing and developer
onboarding.

UI/UX and Figma Initial designs were created and iterated
collaboratively in Figma, allowing developers and designers
to maintain a tight feedback loop. Prototypes served as a
reference for pixel-perfect implementation and accessibility
compliance.

Front-End Technologies: JavaScript, HTML, CSS Core
development was carried out using JavaScript (ES6+), with
HTMLS5 and modular SCSS for structure and styling. CSS
variables were introduced to improve maintainability across
themes. Responsive design principles and Flexbox/Grid
layouts were used to ensure cross-device compatibility.

* ') SITE USER (*°) ADMIN USER
CONTENT ADMIN
PAGES APP
TEMPLATES i
REACT ROUTER

{DJANGO) - ! e SRS

A (JAVASCRIPT)

AP STATE
(REDUX)

(JAVASCRIPT)

cMS REST APY 2 =
S S

SERVER-SIDE COMPONENTS THIRD-PARTY SERVICES
Fig 4: Front-end Development Architecture

API Management and Integration REST APIs were managed
using Axios. A custom Axios instance was configured for
interceptors, headers, and token refresh logic. Swagger
documentation aided in API understanding and auto-
generation of client SDKs when needed.

Design and Accessibility WCAG- compliant components were
ensured across the UI with semantic HTML, ARIA roles, and
keyboard navigation. Figma designs were annotated with
accessibility tags and tested using tools like axe and
Lighthouse.

Lessons Learned and Best Practices

e Start with small feature migrations
architecture.

e Use Figma as a single source of truth for all design assets.

e Conduct design reviews alongside code reviews.

e Automate testing at all levels: unit, integration, and
E2E.

to validate

e Use GitHub Actions to enforce linting and test coverage.
e Develop React-based applications for seamless user

experience.

e Design and prototype UI/UX for better interaction and
navigation.

e Support migration of legacy systems to modern React
frameworks.

e Conduct quality assurance (QA) testing to maintain
performance and security.

e Implement API integrations for efficient data flow and
system interoperability.

Acknowledgements

This work reflects the contributions of a multidisciplinary
team of developers, designers, data scientists, and QA
engineers who collaborated to bring the platform to
production. Special thanks to open- source communities that
supported Material UI, React, and testing libraries.

II. CONCLUSION

During the development of a scalable React-based platform, I
contributed over 20 reusable Ul components, reducing
development time and improving maintainability by
refactoring legacy code. With >90% unit test coverage and
centralized error handling, the system saw improved
reliability and reduced bugs. I accelerated QA cycles through
test automation and enhanced UI accessibility and cross-
platform consistency. My work enabled real-time clinical
workflows, improved wuser satisfaction, and supported
continuous delivery with timely completion of 35+ tasks
across modules. Active participation in Agile ceremonies
ensured strong team collaboration and iterative improvement

REFERENCES

1. D. Abramov, "Getting Started with React," Meta Open
Source, 2023.

2. S. Russell and P. Norvig, "Artificial Intelligence: A
Modern Approach," Pearson, 2021.

3. M. Fowler, "Patterns of Enterprise
Architecture," Addison-Wesley, 2003.

4. K. Dodds, "Testing JavaScript Applications," Frontend
Masters, 2022.

5. E. Evans, "Domain-Driven Design: Tackling Complexity
in the Heart of Software," Addison-Wesley, 2004.

6. C. Richardson, "Microservices Patterns: With examples
in Java," Manning, 2018.

7. M. Hartl, "Full Stack Development with JavaScript and
React," DigitalOcean, 2022.

8. Google, "Web Accessibility Guidelines," 2023.

9. GitHub Docs, "GitHub Actions Documentation," 2023.

10. Material UI Docs, and
Components," 2023.

Application

"Material Ul Theming

© 2025 JSRET

International Journal of Scientific Research & Engineering Trends
Volume 11, Issue 3, May-June-2025, ISSN (Online): 2395-566X

11. Figma, "Design Collaboration Platform," 2023. project
demonstrates a systematic and robust approach to
modernizing web platforms using React. The blend of
modular architecture, Al integration, and robust QA
practices has led to measurable performance gains and
maintainability improvements. The experience also
underlines the importance of continuous monitoring,
developer tooling, and end-user feedback in sustaining a
high-performing frontend ecosystem.

© 2025 IJSRET
4

