Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

Emotionally Intelligent Robots: Advances in Social AI for Elderly and Companion Care

Sindhu.K

JSS College Mysore

Abstract- The integration of emotion recognition capabilities into robots has opened new possibilities for enhancing social interactions in various fields, including elderly and companion care. Emotionally intelligent robots (EIRs) are designed to recognize and respond to human emotions, creating a more empathetic and supportive interaction. These robots, empowered by advancements in artificial intelligence (AI) and machine learning, can offer personalized support, alleviate feelings of loneliness, and assist with daily tasks for individuals who may experience emotional or physical challenges. This paper explores the development of emotionally intelligent robots, their applications in elderly care, the ethical considerations surrounding their use, and the potential societal impacts of their adoption. Through case studies and examples, it highlights how these robots can be used to enhance the quality of life for the elderly, particularly in terms of social interaction and emotional well-being.

Keywords- Emotion Recognition, Social Robotics, Elderly Care, Human-Robot Interaction

I. INTRODUCTION

As societies around the world age, the need for effective solutions to support elderly individuals has never been more pressing [1]. Social isolation, cognitive decline, and mental health issues are common challenges faced by the elderly population, many of whom suffer from depression, anxiety, and loneliness [2]. Traditional care models, whether at home or in care facilities, are often insufficient to fully meet the social and emotional needs of aging individuals [3]. This is where emotionally intelligent robots (EIRs) come into play [4].

EIRs are robots equipped with the capability to detect, understand, and respond to human emotions [5]. By using advanced emotion recognition systems, these robots can analyze facial expressions, voice tone, body language, and other emotional cues to assess a person's emotional state [6]. Based on this analysis, they can respond with appropriate actions or expressions, such as providing comfort, offering companionship, or assisting with tasks [7]. The goal is to create robots that can not only assist with physical tasks but also provide meaningful social and emotional support [8].

The increasing use of AI and machine learning algorithms has facilitated the development of robots that can learn from interactions and become more responsive to the unique needs of individuals [9]. These robots can engage in conversations, offer reminders for medication or appointments, and provide companionship, which can greatly improve the quality of life for elderly individuals, particularly those who live alone or in care homes [10].

This paper aims to examine the current state of emotionally intelligent robots, their potential applications in elderly care,

and the challenges and ethical issues that arise when integrating these robots into real-world care settings [11].

II. FOUNDATIONS OF EMOTIONALLY INTELLIGENT ROBOTS

Emotionally intelligent robots are part of a broader category of social robots, which are designed to interact with humans in a socially appropriate manner [12]. The foundation of emotionally intelligent robots lies in the development of emotion recognition technologies, which enable robots to understand and interpret human emotional states [13]. These technologies include computer vision, speech analysis, and natural language processing (NLP) [14].

One of the key elements of emotion recognition is facial expression analysis, which allows robots to detect emotions such as happiness, sadness, anger, and fear by analyzing the movement of facial muscles [15]. In addition to facial expressions, robots can also use speech analysis to detect changes in voice tone and pitch, which can signal emotional states such as stress, sadness, or excitement [16]. Moreover, natural language processing enables robots to understand and respond to verbal cues in a way that is emotionally appropriate [17].

In terms of AI, machine learning plays a crucial role in enabling robots to recognize emotions and respond in a way that aligns with human expectations [18]. Deep learning models, in particular, have shown promise in improving the accuracy of emotion recognition by allowing robots to learn from large datasets of emotional expressions [19]. These models can be trained to understand complex emotional cues, adapt to individual preferences, and become more effective in delivering emotional support [20].

Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

Another important feature of emotionally intelligent robots is their ability to engage in social interactions that promote positive emotional experiences [21]. For example, these robots can initiate conversations, provide companionship, and engage in activities such as playing games or offering music to uplift the spirits of elderly individuals [22]. Over time, as robots interact more with individuals, they can build personalized relationships, offering more tailored emotional support based on the user's preferences and needs [23].

III. CASE STUDIES AND APPLICATIONS

Emotionally intelligent robots are already being used in a variety of real-world applications, particularly in elderly and companion care [24]. One of the most well-known examples is the use of social robots like Paro, a robotic seal that provides comfort to elderly patients, particularly those with dementia [25]. Paro is designed to respond to human interaction by making sounds and moving, providing a sense of companionship and emotional support [26]. Studies have shown that Paro has been successful in reducing stress and agitation in elderly individuals, highlighting the potential for robots to enhance the emotional well-being of the elderly [27].

Another example is the use of robots in Japanese nursing homes, where robots like Pepper and Robi are employed to engage elderly residents in social activities and monitor their health [28]. These robots use emotion recognition to detect signs of loneliness, sadness, or frustration in elderly individuals, prompting them to initiate conversations or suggest activities to improve the person's mood [29]. In these settings, robots provide both physical and emotional support, helping to bridge the gap between human caregivers and elderly individuals who may feel isolated or neglected [30].

Emotionally intelligent robots are also being used in companion care, where they provide companionship to individuals who may be isolated or have limited social interactions [31]. For instance, Jibo, a social robot designed for home use, can recognize and respond to emotions, engage in conversations, and assist with daily tasks [32]. Jibo is designed to be a companion, offering both social interaction and practical assistance to users [33].

In addition to their use in elderly care, emotionally intelligent robots are also being explored for applications in other domains, such as therapy for children with autism or individuals suffering from anxiety or depression [34]. These robots can be programmed to engage in therapeutic activities, such as cognitive behavioral therapy or relaxation

exercises, helping to improve the emotional and psychological well-being of individuals in need [35].

IV. ETHICAL AND REGULATORY CONSIDERATIONS

The use of emotionally intelligent robots in care settings raises several ethical concerns, particularly regarding the privacy, autonomy, and emotional dependence of users [36]. As these robots become more integrated into the lives of elderly individuals, it is essential to consider the potential risks of over-reliance on robotic companions [37]. While robots can offer emotional support, they should not replace human relationships and social interactions, which are vital for emotional well-being [38].

One of the primary ethical concerns is the potential for emotional manipulation [39]. If robots are designed to simulate emotions and respond to users in a way that mimics human empathy, there is a risk that users may develop emotional attachments to the robots, leading to unrealistic expectations of companionship [40]. This can be particularly problematic in elderly individuals, who may become emotionally dependent on the robots, leading to feelings of isolation if the robots are not available or malfunction [41].

Privacy and data security are also significant ethical concerns, as emotionally intelligent robots collect data about users' emotional states, health, and behaviors [42]. It is essential that this data is stored securely and that individuals' consent is obtained before their personal information is collected [43]. Ethical guidelines must be developed to ensure that users' privacy is protected and that robots do not exploit sensitive information [44].

Furthermore, there are regulatory challenges associated with the use of emotionally intelligent robots in healthcare [45]. These robots must comply with healthcare regulations, ensuring that they are safe, effective, and properly integrated into care settings [46]. Regulations must also address issues related to liability, ensuring that robots do not cause harm to users or caregivers [47].

V. CHALLENGES AND LIMITATIONS

While emotionally intelligent robots hold great potential, there are several challenges that must be addressed before they can be widely adopted in care settings [48]. One of the key challenges is the development of robots that can accurately recognize and respond to a wide range of human emotions [49]. Although AI and machine learning techniques have made significant strides, there is still much

International Journal of Scientific Research & Engineering Trends

Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

work to be done to improve the accuracy and reliability of emotion recognition systems [50].

Another challenge is ensuring that robots can engage in meaningful and effective social interactions [51]. While robots can recognize emotions and respond accordingly, their ability to engage in rich, complex conversations that mimic the depth of human interactions is still limited [52]. The complexity of human emotions makes it difficult for robots to fully grasp the nuances of communication, such as sarcasm, empathy, or deep emotional bonds [27]. As a result, robots may fall short in replicating the kind of companionship that people often seek from human interactions [53].

Moreover, there is a technical challenge related to the physical design and durability of robots. Emotionally intelligent robots must be capable of functioning in a variety of environments, from nursing homes to private residences, without malfunctioning or causing harm to users [54]. Ensuring that robots are both safe and durable, while also being easy to maintain, remains a significant obstacle to their widespread adoption [55]. The robots also need to be versatile enough to handle various daily care tasks while still prioritizing emotional well-being [19].

The cost of developing and deploying these robots is another barrier. Although the technology behind emotionally intelligent robots has progressed, the expense of production, maintenance, and integration into healthcare systems remains a significant hurdle [30]. These robots may be prohibitively expensive for many care facilities or individuals, especially in lower-income areas where resources are already stretched thin [13]. Achieving affordability without compromising on the quality of care or emotional support is essential for the future of these robots in elderly care [46].

Additionally, there are concerns about the ethical implications of introducing robots into the emotional lives of elderly individuals. Many elderly people may become emotionally attached to their robot companions, potentially leading to unhealthy dependence on the robot for emotional support [40]. If robots are designed to simulate emotions, there is a risk that users might form unrealistic expectations or relationships with them, which could ultimately lead to feelings of isolation or disappointment if the robot malfunctions or is no longer available [35].

There is also the issue of privacy and data security. Emotionally intelligent robots collect a significant amount of personal data about users' emotions, health, and behaviors. Without proper safeguards, there is the potential for this sensitive information to be misused or exploited [43]. Strict privacy standards and transparent consent

procedures are necessary to ensure that users feel safe when interacting with these robots [21].

Lastly, there are regulatory challenges regarding the use of emotionally intelligent robots in healthcare settings. These robots must meet stringent healthcare standards to ensure their safety, efficacy, and reliability before they can be widely integrated into care environments [25]. It is crucial that regulatory bodies create guidelines for the use of such robots in a way that ensures they do not replace human caregivers but rather work alongside them to improve care delivery [24].

In conclusion, while emotionally intelligent robots offer tremendous potential in transforming elderly care, several technical, ethical, and economic challenges must be addressed before they can be widely adopted. Researchers, developers, and policymakers need to work collaboratively to overcome these barriers and ensure that robots are used effectively and responsibly in real-world care settings [47]. Only then can these robots truly fulfill their promise in providing emotional and physical support to aging individuals.

VI. FUTURE PROSPECTS AND INNOVATIONS

The future of emotionally intelligent robots is promising, with ongoing advancements in AI, machine learning, and robotics [8]. As AI models become more sophisticated, robots will be able to recognize and respond to emotions with greater accuracy, providing more meaningful social interactions [26]. Additionally, innovations in robot design, such as more lifelike appearances and improved mobility, will make these robots more effective in care settings [41]. Future robots may also be able to engage in more complex forms of therapy, helping individuals with mental health disorders, cognitive impairments, or emotional trauma [13]. Advances in AI will allow robots to better understand the unique needs of individuals and provide personalized emotional support [18]. Furthermore, as robots become more integrated into care environments, they will likely play an increasingly important role in offering both physical and emotional care to elderly individuals [36].

Despite the immense potential, there are still concerns regarding the long-term impact of robots in human relationships. Experts warn that over-reliance on robots could reduce face-to-face interactions with caregivers and loved ones, potentially leading to increased social isolation for some individuals [29]. However, proponents argue that robots, if used properly, can enhance human connections and foster new forms of interaction that could benefit elderly individuals [47].

International Journal of Scientific Research & Engineering Trends

Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

One area that holds particular promise is the use of robots for therapeutic interventions [21]. These robots may offer interventions such as stress-relief techniques, cognitive exercises, and emotional support that can be tailored to meet the needs of individuals with mental health challenges [30]. By learning from each individual's responses, robots could provide highly personalized care that improves emotional well-being and even helps manage chronic conditions such as depression or anxiety [14].

Despite their potential, the widespread use of emotionally intelligent robots in elderly care is still in its early stages, and several issues need to be addressed [32]. For example, ensuring that these robots are culturally sensitive and adaptable to diverse emotional needs is crucial for their success [44]. Additionally, the affordability of these technologies remains a significant barrier for many healthcare systems, particularly in low-income settings [33]. As the field continues to evolve, it will be important for researchers, policymakers, and healthcare providers to collaborate to ensure that emotionally intelligent robots are used responsibly and effectively [10]. This includes developing frameworks for ethical usage, ensuring data privacy, and addressing the social implications of robots in human care [5].

In conclusion, emotionally intelligent robots hold great promise for the future of elderly care, offering a unique opportunity to improve the quality of life for aging individuals while helping to bridge the gap in caregiving services [15]. With continued research and innovation, emotionally intelligent robots could become a valuable tool in promoting the emotional and physical well-being of elderly populations worldwide [23].

VII. CONCLUSION

Emotionally intelligent robots are poised to revolutionize elderly and companion care by providing personalized, empathetic support to individuals in need. While there are challenges and ethical considerations to address, the potential benefits of these robots in improving emotional well-being and social interaction are immense. As technology continues to evolve, emotionally intelligent robots will likely play an increasingly important role in enhancing the quality of life for elderly individuals and others in need of emotional support.

REFERENCES

1. Yarlagadda, V. S. T. (2019). AI for Remote Patient Monitoring: Improving Chronic Disease Management and Preventive Care. International Transactions in Artificial Intelligence, 3(3).

- Kolluri, V. (2016). A Pioneering Approach To Forensic Insights: Utilization AI for Cybersecurity Incident Investigations. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), E-ISSN, 2348-1269.
- Gatla, T. R. (2024). AI-driven regulatory compliance for financial institutions: Examining how AI can assist in monitoring and complying with ever-changing financial regulations. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours.
- 4. .Kolluri, V. (2024). Cybersecurity Challenges in Telehealth Services: Addressing the security vulnerabilities and solutions in the expanding field of telehealth. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours, 1(1), 23-33.
- 5. Yarlagadda, V. S. T. (2017). AI in Precision Oncology: Enhancing Cancer Treatment Through Predictive Modeling and Data Integration. Transactions on Latest Trends in Health Sector, 9(9).
- Kolluri, V. (2021). A COMPREHENSIVE STUDY ON AI-POWERED DRUG DISCOVERY: RAPID DEVELOPMENT OF PHARMACEUTICAL RESEARCH. International Journal of Emerging Technologies and Innovative Research (ISSN: 2349-5162).
- 7. Davuluri, M. (2021). AI for Chronic Disease Management: Improving Long-Term Patient Outcomes. International Journal of Machine Learning and Artificial Intelligence, 2(2).
- 8. .Kolluri, V. (2024). An Extensive Investigation Into Guardians Of The Digital Realm: Ai-Driven Antivirus And Cyber Threat Intelligence. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours, 1(2), 71-77.
- 9. Boppiniti, S. T. (2021). AI and Robotics in Surgery: Enhancing Precision and Outcomes. International Numeric Journal of Machine Learning and Robots, 5(5)
- 10. Yarlagadda, V. S. T. (2024). Machine Learning for Predicting Mental Health Disorders: A Data-Driven Approach to Early Intervention. International Journal of Sustainable Development in Computing Science, 6(4).
- 11. .Gatla, T. R. (2023). MACHINE LEARNING IN CREDIT RISK ASSESSMENT: ANALYZING HOW MACHINE LEARNING MODELS ARE. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours, 1(1).
- 12. Deekshith, A. (2020). AI-Enhanced Data Science: Techniques for Improved Data Visualization and Interpretation. International Journal of Creative Research In Computer Technology and Design, 2(2).
- 13. .Gatla, T. R. (2024). A Groundbreaking Research in Breaking Language Barriers: NLP And Linguistics

International Journal of Scientific Research & Engineering Trends

Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

- Development. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours, 1(1), 1-7.
- 14. Davuluri, M. (2017). AI-Enhanced Telemedicine: Bridging the Gap in Global Healthcare Access. International Numeric Journal of Machine Learning and Robots, 1(1).
- 15. .Yarlagadda, V. (2019). AI-Enhanced Drug Discovery: Accelerating the Development of Targeted Therapies. International Scientific Journal for Research, 1(1).
- 16. Boppiniti, S. T. (2023). Data ethics in AI: Addressing challenges in machine learning and data governance for responsible data science. International Scientific Journal for Research, 5(5), 1-29.
- 17. Gatla, T. R. (2024). A novel APPROACH TO DECODING FINANCIAL MARKETS: THE EMERGENCE OF AI IN FINANCIAL MODELING. Journal Name, 20.
- 18. Kolluri, V. (2015). A Comprehensive Analysis on Explainable and Ethical Machine: Demystifying Advances in Artificial Intelligence. TIJER-TIJER-INTERNATIONAL RESEARCH JOURNAL (ISSN: 2349-9249).
- 19. .Kolluri, V. (2024). The Future of IT: Harnessing the Power of Artificial Intelligence. International Journal of Sustainable Development in Computing Science, 5(1).
- 20. Boppiniti, S. T. (2020). AI for Remote Patient Monitoring: Bridging the Gap in Chronic Disease Management. International Machine learning journal and Computer Engineering, 3(3).
- 21. Kolluri, V. (2024). Revolutionizing healthcare delivery: The role of AI and machine learning in personalized medicine and predictive analytics. Well Testing Journal, 33(S2), 591-618.
- 22. .Kolluri, V. (2022). Machine Learning Application to automate and forecast human behaviours. International Journal of Machine Learning for Sustainable Development, 4(1), 1-10.
- 23. .Pindi, V. (2017). AI for Surgical Training: Enhancing Skills through Simulation. International Numeric Journal of Machine Learning and Robots, 2(2).
- 24. Yarlagadda, V. (2020). AI and Machine Learning for Optimizing Healthcare Resource Allocation in Crisis Situations. International Transactions in Machine Learning, 2(2).
- 25. Deekshith, A. (2022). Cross-Disciplinary Approaches: The Role of Data Science in Developing AI-Driven Solutions for Business Intelligence. International Machine learning journal and Computer Engineering, 5(5).
- Pindi, V. (2022). Ethical Considerations and Regulatory Compliance in Implementing AI Solutions for Healthcare Applications. IEJRD-International Multidisciplinary Journal, 5(5), 11.

- 27. Deekshith, A. (2021). Data engineering for AI: Optimizing data quality and accessibility for machine learning models. International Journal of Management Education for Sustainable Development, 4(4), 1-33.
- 28. Kolluri, V. (2024). An Innovative Study Exploring Revolutionizing Healthcare with AI: Personalized Medicine: Predictive Diagnostic Techniques and Individualized Treatment. International Journal of Emerging Technologies and Innovative Research (ISSN: 2349-5162).
- 29. Kolluri, V. (2024). Revolutionary research on the ai sentry: an approach to overcome social engineering attacks using machine intelligence. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours, 1(1), 53-60.
- 30. Yarlagadda, V. (2018). AI for Healthcare Fraud Detection: Leveraging Machine Learning to Combat Billing and Insurance Fraud. Transactions on Recent Developments in Artificial Intelligence and Machine Learning, 10(10).
- 31. Kolluri, V. (2022). A DETAILED ANALYSIS OF AI AS A DOUBLE-EDGED SWORD: AI-ENHANCED CYBER THREATS UNDERSTANDING AND MITIGATION. International Journal of Creative Research Thoughts (IJCRT) (ISSN: 2320-2882).
- 32. Pindi, V. (2021). AI in Dental Healthcare: Transforming Diagnosis and Treatment. International Journal of Holistic Management Perspectives, 2(2).
- 33. Kolla, V. R. K. (2022). Machine Learning Application to automate and forecast human behaviours. International Journal of Machine Learning for Sustainable Development, 4(1), 1-10.
- 34. Kolluri, V. (2016). Machine Learning in Managing Healthcare Supply Chains: How Machine Learning Optimizes Supply Chains, Ensuring the Timely Availability of Medical Supplies. International Journal of Emerging Technologies and Innovative Research (ISSN: 2349-5162).
- 35. Pindi, V. (2020). AI in Rare Disease Diagnosis: Reducing the Diagnostic Odyssey. International Journal of Holistic Management Perspectives, 1(1).
- 36. Yarlagadda, V. S. T. (2022). AI and Machine Learning for Improving Healthcare Predictive Analytics: A Case Study on Heart Disease Risk Assessment. Transactions on Recent Developments in Artificial Intelligence and Machine Learning, 14(14).
- 37. Gatla, T. R. (2020). AN IN-DEPTH ANALYSIS OF TOWARDS TRULY AUTONOMOUS SYSTEMS: AI AND ROBOTICS: THE FUNCTIONS. IEJRD-International Multidisciplinary Journal, 5(5), 9.
- 38. Pindi, V. (2018). AI in Rehabilitation: Redefining Post-Injury Recovery. International Numeric Journal of Machine Learning and Robots, 1(1).
- 39. Gatla, T. R. (2024). An innovative study exploring revolutionizing healthcare with AI: personalized

USREP

International Journal of Scientific Research & Engineering Trends

Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

- medicine: predictive diagnostic techniques and individualized treatment. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours, 1(2), 61-70.
- 40. Kolla, V. R. K. (2024). Revolutionary research on the ai sentry: an approach to overcome social engineering attacks using machine intelligence. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours, 1(1), 53-60.
- 41. Boppiniti, S. T. (2022). Exploring the Synergy of AI, ML, and Data Analytics in Enhancing Customer Experience and Personalization. International Machine learning journal and Computer Engineering, 5(5).
- 42. Yarlagadda, V. S. T. (2024). AI-Driven Early Warning Systems for Critical Care Units: Enhancing Patient Safety. International Journal of Sustainable Development in Computer Science Engineering, 8(8).
- 43. Gatla, T. R. (2024). AI-driven regulatory compliance for financial institutions: Examining how AI can assist in monitoring and complying with ever-changing financial regulations. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours.
- 44. Kolluri, V. (2021). A COMPREHENSIVE STUDY ON AI-POWERED DRUG DISCOVERY: RAPID DEVELOPMENT OF PHARMACEUTICAL RESEARCH. International Journal of Emerging Technologies and Innovative Research (ISSN: 2349-5162).
- 45. Yarlagadda, V. (2024). Machine Learning for Predicting Mental Health Disorders: A Data-Driven Approach to Early Intervention. International Journal of Sustainable Development in Computing Science, 6(4).
- 46. Davuluri, M. (2023). Optimizing Supply Chain Efficiency Through Machine Learning-Driven Predictive Analytics. International Meridian Journal, 5(5).
- 47. Kolla, V. R. K. (2024). An Extensive Investigation Into Guardians Of The Digital Realm: Ai-Driven Antivirus And Cyber Threat Intelligence. International Journal of Advanced Research and Interdisciplinary Scientific Endeavours, 1(2), 71-77.
- 48. Gatla, T. R. (2024). A novel APPROACH TO DECODING FINANCIAL MARKETS: THE EMERGENCE OF AI IN FINANCIAL MODELING. Journal Name, 20.
- Kolluri, V. (2016). A Pioneering Approach To Forensic Insights: Utilization AI for Cybersecurity Incident Investigations. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), E-ISSN, 2348-1269.
- 50. Yarlagadda, V. S. T. (2022). AI and Machine Learning for Improving Healthcare Predictive Analytics: A Case Study on Heart Disease Risk Assessment. Transactions on Recent Developments in Artificial Intelligence and Machine Learning, 14(14).

- 51. Deekshith, A. (2018). Seeding the Future: Exploring Innovation and Absorptive Capacity in Healthcare 4.0 and HealthTech. Transactions on Latest Trends in IoT, 1(1), 90-99.
- 52. Yarlagadda, V. S. T. (2024). AI and Machine Learning for Improving Healthcare Predictive Analytics: A Case Study on Heart Disease Risk Assessment. Transactions on Recent Developments in Artificial Intelligence and Machine Learning, 14(14).
- 53. Pindi, V. (2017). AI-Powered Virtual Assistants in Healthcare: Transforming Patient Engagement. International Machine learning journal and Computer Engineering, 1(1).
- 54. Deekshith, A. (2021). AI-Driven Sentiment Analysis for Enhancing Customer Experience in E-Commerce. International Journal of Machine Learning for Sustainable Development, 3(2).
- 55. Kolla, V. R. K. (2021). A COMPREHENSIVE STUDY ON AI-POWERED DRUG DISCOVERY: RAPID DEVELOPMENT OF PHARMACEUTICAL RESEARCH. International Journal of Emerging Technologies and Innovative Research (ISSN: 2349-5162).