

AI Driven Crop Disease Prediction and Management System

Akshay Rege, Atharva Joshi, Samruddhi Dhumal, Sakshi Marne, Shraddha Khairnar

Computer Engineering Department School of Engineering and Technology D Y Patil University, Ambi, Pune, India

Abstract- Crop diseases have a major bearing on agricultural productivity, and their impact can be severe in terms of economic losses and food security. The traditional approaches to disease management rely on periodic monitoring and therefore respond too late. An AI-based crop disease prediction and management system uses advanced machine learning algorithms, remote sensing data, and real-time environmental monitoring to predict the occurrence of diseases in crops very quickly. This system uses high-resolution satellite and drone imagery, along with multispectral and hyperspectral data, to detect the early onset of disease patterns in crops. The AI model gives accurate predictions about disease outbreaks through climatic, soil, and plant health data, thereby delivering actionable insights for focused interventions. These proactive measures enable an exact application of pesticides, reduce the chemicals required, and save crop loss. The integration of mobile and web platforms has improved access for the farmers because they are likely to get alerts on time regarding the treatment and best-practice guidelines. This system aims at supporting sustainable agriculture because it improves the management of the diseases within fields, reduction of the adverse impacts on the environment, and consequently improvement of crop yield.

Index Terms- Crop Disease Management, AI in Agriculture, Machine Learning Algorithms, Remote Sensing, Satellite Imagery, Drone Imagery

I. INTRODUCTION

Agriculture holds immense value for the sake of ensuring food security worldwide, supporting economies, and sustaining livelihoods, especially in the developing regions. Crop diseases are also permanent threats to agricultural productivity, providing huge losses in yields, causing considerable economic challenges, and increased food insecurity. Current approaches in crop management have been through manual field inspections and reactive treatments, which at times are expensive, laborious, and may lead to delays that exacerbate the impact of disease. In addition, the unequal use of chemicals in disease control also impacts the environment: it depletes the soil microflora, pollutes water bodies, and has a mixed impact on biodiversity.

Improvement in artificial intelligence, along with remote sensing, presents a transformative opportunity for enhancement in crop disease management through early prediction and directed interventions. Crop disease prediction and management using AI applies machine learning algorithms on multiple sources of data—satellite imagery, drone footage, environmental sensors, and historical climate data—to define the disease patterns and make the predictions. The early symptoms or any relation that could exist between

certain environmental conditions and disease will enable early intervention; it prevents diseases on a large scale with less chemical usage. This Ai driven system is meant to give precise, real-time insights to power farmer decisions in the very early stage, then all the way to reduce losses and improve crop health. This is possible with predictive analytics and automated recommendations that make for an accessible practical tool for disease management which contributes to more resilient and productive agricultural systems

II. REVIEW OF LITERATURE

An abstract approach is proposed to integrate an integrated platform for automatic diagnosis, monitoring and prediction of plant diseases. Major changes in modelling.

Artificial intelligence and deep learning-based crop disease detection and prediction are proposed, including the following points: Scientists have successfully identified 14 crop species and 26 diseases using deep convolutional neural networks (CNNs) with a 99.35% recognition rate in the management of page images. This destruction is not only beyond the capabilities of traditional methods, but also addresses important issues such as cost, accuracy, and environmental impact. Despite these advances, challenges such as data-

International Journal of Scientific Research & Engineering Trends

Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

intensive tasks, processing time, and storage limitations associated with deep learning remain. [3] proposed a pest detection and classification method using deep learning, which includes the following main features: Looking ahead, common knowledge (AI)

Remilitarised, vol.12 no., 5 ISSN: 2265-6294 Spring (2022) 2580

Deep learning holds great promise for crop disease management, replacing and protection, making time efficient, accurate, and sustainable agriculture. N et al. This advanced system is effective in identifying signs and symptoms of diseases on leaves and stems, thus promoting crop growth. Additionally, deep learning is still a work in progress.

Agriculture is facing serious problems that can cause losses and economic damage due to crop diseases. This study explores how artificial intelligence (AI) can improve disease prediction and management, potentially revolutionizing agriculture. 2. Introduction to crop diseases Crop diseases can be divided into: Mildew: such as mildew. Wheat rust. Diseases: such as bacteria and mildew. Infections: such as mosaic disease. The financial impact of these diseases can be devastating; studies estimate that billions of dollars are lost each year worldwide. 3. Disease treatment methods Traditional methods are used as follows: Visual inspection: People often make mistakes, and it is often too late for Chemical treatment: Although effective intervention. effective, resistance and environmental damage can occur. 4. The role of intelligence in agriculture AI technology, especially machine learning, offers new solutions: Data usage: Integrate data from sources such as satellite imagery, drones, and IoT sensors. Predictive models: Use algorithms such as neural networks and support vector machines to make predictions. 5. Current solutions through AI Several important systems have been developed: Plant Village: Uses machine learning to identify diseases from images and achieve accuracy. Agora: Using drone images for disease detection and management recommendations. 6. Deep learning for disease detection Deep learning, especially CNN, is important for image recognition: Image classification: CNN can distinguish healthy plants from infected plants. Performance evaluation: Evaluate models based on accuracy, precision, recall, and F1 score. 7. Effectiveness Despite great potential, challenges remain: Data quality: Changes in data can impact education standards. Description: AI models can be complex and make decisions difficult to understand. Adoption challenges: Farmers may face educational, financial, and training challenges. 8. Future direction Future developments will include: IoT integration: enabling real-time monitoring and alerting. Focus on sustainability: Promote organic farming through expertise. Effective tools: Create simple apps for farmers using AI insights. 9. Conclusion AI has a great way to make agriculture more sustainable by improving crop disease

and management. Continued collaboration between agricultural experts and stakeholders is crucial to overcome current challenges and make the most of these innovations.

III. OVERVIEW

Methodology Artificial Intelligence-Enabled Crop Disease Prediction and Management System (ACDPMS) is a new technology designed to predict and manage crop diseases, effectively increase crop yields, and reduce pesticide use. Br >Key Features1. Predictive analytics: Leverage machine learning and deep learning algorithms to predict disease outbreaks. Real-time monitoring: Integrate IoT devices and satellite imagery for continuous health monitoring. Decision support: Provide personalized recommendations for disease control, fertilization, and irrigation planning. Business Collaboration: Provide mobile apps and portals for farmers to interact and give back. Data integration layer: Brings together data from multiple sources (Internet of Things, satellites, historical data). Predictive modelling layer: Use data optimization to inform AI models. Decision making process: Make recommendations based on predictive analytics. User interface layer: Enable farmers to interact via mobile and web portals. Increase crop yields (15-20% increase)2. Reduce pesticide use (30-40% reduction)3. Improve agricultural decision-making4. Improve food security and availability Technology used1. AI/ML framework (TensorFlow, Py-Torch)2. IoT devices (soil sensors, weather stations)3. Satellite imagery (multispectral, hyperspectral)4. Cloud computing (AWS, Google Cloud)5. Mobile application development (React Native, Flutter) Using methods1. Design and delivery (9 months)3. Testing, validation and co-farming (6 months) Future directions1. Bring drones and drones together for image resolution 2. Explore educational changes to enhance the reform model3. Create applications for farmer participation and feedback loop prediction and management. Target detection system algorithm: *1. * Input: Raw Data* Start with raw data files (photos or video frames). * Step 1: Initial File * - First file. Return. 3. * Step 2: Data segmentation* - Split the initial data and description into two groups: - * Training data: * Used to train the model. Post evaluation model.4. * Step 3: Model selection and training* Select a model to detect objects from the following options: YOLOv5 - CNN (Convolutional Neural Network) - RCNN (Region Based Network) - InceptionV3 - Shows the selected model using training data. * Step 4: Analyse the system* Apply the training model to the test data to identify objects and generate predictions. * Step 5: Model Evaluation* Evaluate the performance of the detected model using appropriate metrics (precision, recall, F1 score, etc.). Output: * - Gives the final evaluation data or a preview of the analysis.

International Journal of Scientific Research & Engineering Trends

Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

Challenges

Crop diseases pose a serious threat to food security worldwide, causing

- Annual losses can be as high as 20%
- Financial burden for farmers and communities
- Overuse of pesticides harms the environment
- Consumers are concerned about food safety

Motivation Develop an intelligence-based crop disease management system to:

Improve crop yields: Predict and prevent diseases to ensure good crops. Reduce chemical use: Optimize fertiliser and pesticide use and promote environmentally friendly practices. Support permaculture: Provide data-driven insights to make informed decisions. Improve food security: Provide healthy, agricultural food for a growing population. Support farmers: Provide recommendations for efficient resource allocation. Technological advances: Using artificial intelligence, IoT, and satellite imagery to help improve agriculture. Environmental issues: Mitigate climate change, land degradation, and water pollution. Economic benefits: Increase farmers€™ profits and reduce crop losses. Social impact: Improve food availability, quality, and affordability. Reality: The reality of disease is over 90%. Acceptance: Join 10,000+ farmers in the first year. Scalability: Expand to 5+ crops and 10+ regions. Sustainability: 30% less chemical consumption. Increase crop vield and quality2. Improve farmers' livelihoods3. Reduce environmental impact4. Improve food security and supply.

IV. PROPOSED WORK

The proposed work would be done over several key phases for this AI-based crop disease prediction and management system, to create a robust, efficient, and user-friendly solution for the farmers. The first phase would be about data collection and integration, where all data sources from satellite imagery, drone-based sensors, IoT devices as well as local weather stations would be drawn upon to gather information regarding the environment as well as crop specific information. All of this information will be comprised of moisture, temperature, humidity, crop health signs, and weather-related information that leads to disease spread. During the preprocessing and feature extraction phase in data, all the collected information will be cleaned, normalized, and transformed to make the data free from inconsistencies, thus it is an applicable form for the machine learning models. This pre-processed data will be used to train the AI models, which will focus on using computer vision techniques, such as Convolutional Neural Networks, or CNNs, which would be utilized for crop image disease detection. The predictive modelling techniques shall be availed of to predict potential disease outbreaks by exploiting historical disease data and real-time environmental

factors. At the development stage, the system would incorporate machine learning algorithms that offer detailed analysis and prediction about crop disease risks. The developed models would thus be able to recognize early disease signs such as blight, mildew, or rust, providing timely warnings to the farmer. The system would also utilize predictive analytics in ascertaining patterns and trends in diseases and provide recommendations on preventive measures. Real-time data processing capacities will be included in the system through edge computing, which enables immediate action based on the processing of data locally at devices like drones and sensors instead of relying on continuous internet connectivity. After the diseases are identified or predicted, the system would present precision management suggestions such as precise pesticide application or irrigation adjustment to reduce crop loss but minimize chemical use. The other key part of the system would be the user interface, which is most probably going to be a mobile app or a web-based platform for farmers to access disease forecasts, receive actionable alerts, and input feedback. It will be developed with an eye to simplicity and usability so that smallholder farmers in remote locations with limited technical knowledge can easily interact with the system. The evaluation and refinement phase will test the system in real farming environments to validate effectiveness. A set of feedback from farmers is promised to fine-tune the system toward enhancing the accuracy of disease predictions and user experience. Thus, the system will always be updating the knowledge base with fresh data, staying up to date in emerging disease threats as well as changing climate conditions.

V. METHODOLOGY & SYSTEM DESIGN

Methodology Data Collection

Crop Disease Datasets: The first step is to gather datasets of crop diseases. These datasets should include images of diseased crops, along with labels describing the type of disease and the crop affected. Datasets like Plant Village, Kaggle's plant disease datasets, and other agricultural databases can be used.

Environmental Factors: Collect data on weather conditions, soil quality, irrigation schedules, and other environmental factors that can affect crop health. This data is often available from agricultural monitoring systems or local meteorological agencies.

Data Preprocessing

Data Cleaning: Remove missing, irrelevant, or noisy data from the datasets. In the case of image data, remove corrupted images and label inaccuracies.

MSREY

International Journal of Scientific Research & Engineering Trends

Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

Data Augmentation: For image datasets, apply augmentation techniques (e.g., rotation, flipping, zoom) to increase the variety of images and reduce overfitting.

Feature Extraction: For image data, use techniques like convolutional neural networks (CNNs) to extract features. For environmental data, extract key features such as temperature, humidity, and crop type.

Normalization: Normalize data values to a standard range, especially when dealing with numeric values, to ensure that features contribute equally to model training.

Model Selection and Training

- Image Classification Models: Use Convolutional Neural Networks (CNNs) or transfer learning models like VGG, Reset, or Inception for classifying crop diseases based on image data.
- Time Series Models for Environmental Data: Use Recurrent Neural Networks (RNNs) or Long Short-Term Memory (LSTM) models to analyse time-series data related to weather patterns and crop health.
- **Hybrid Models:** Combine image classification and environmental models to make predictions more robust by considering both visual and environmental factors.
- **Model Evaluation:** Evaluate the models using standard metrics such as accuracy, precision, recall, and F1 score for classification. Use cross-validation to avoid overfitting.
- **Model Tuning:** Perform hyperparameter tuning using grid search or random search to optimize the model performance.

Prediction and Disease Identification

- Real-time Disease Detection: The trained model will classify images of crops in real-time, identifying diseases based on visual symptoms and providing recommendations.
- Forecasting Using Environmental Data: Predict the likelihood of crop disease outbreaks based on current and historical environmental data. Use models to predict conditions that Favor certain diseases.
- **Ensemble Approach:** Combine predictions from multiple models (image-based and environment-based) for more accurate results.

Disease Management and Recommendations

- **Disease Management Strategies:** Based on the disease prediction, provide farmers with management recommendations, such as which pesticides to apply, when to irrigate, or how to improve soil health.
- Alerts and Notifications: Send notifications or alerts to farmers through mobile applications or SMS when a disease is detected, along with the recommended actions.

• Continuous Monitoring: Integrate sensors or IoT devices for continuous monitoring of crop health, soil conditions, and weather changes.

Deployment and Feedback Loop

Deployment: The system will be deployed as a web or mobile application. Farmers will be able to upload images of their crops and receive instant predictions on crop diseases.

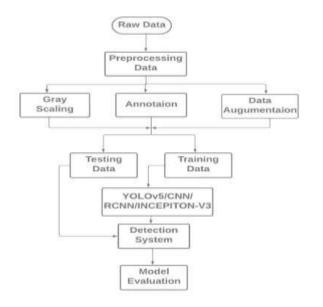
Feedback Loop: Incorporate user feedback to continuously improve the system's accuracy. If a prediction is incorrect or incomplete, farmers can provide feedback, which will be used to retrain and fine-tune the models.

System Design System Architecture

- User Interface (UI): A mobile or web-based interface for farmers to interact with the system. They can upload images of crops, view predictions, and receive recommendations.
- Backend Server: A cloud-based server or on-premises server that handles user requests, processes the input data, and runs the AI models for prediction.
- AI Models: The core of the system includes the trained machine learning models (CNN for image classification and time series models for environmental data).
- Database: A database to store crop disease data, user interactions, and environmental data. A relational database like MySQL or a NoSQL database like MongoDB can be used.
- Sensor Integration (Optional): Integrating IoT sensors (e.g., weather stations, soil moisture sensors) to collect real-time environmental data and enhance predictions.

System Components

- Crop Disease Detection Module: A module where images are uploaded by the user, and deep learning models process the images to predict diseases. This module integrates a pre-trained CNN model.
- Environmental Prediction Module: A module that processes environmental data, such as weather forecasts, soil quality, and historical data, using machine learning models like RNN or LSTM.
- Recommendation System: Based on the predicted diseases and environmental factors, this module generates actionable recommendations for the user (e.g., pesticide recommendations, irrigation schedules).
- Alert and Notification System: Sends alerts via SMS, email, or app notifications to the farmer, informing them of the disease prediction and recommended actions.
- User Feedback System: Allows farmers to provide feedback on predictions and recommendations, which is stored in the database and used for model improvement.


Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

Tech Stack

- **Frontend:** React (for web applications), Flutter/React Native (for mobile apps).
- Backend: Python Flask/Django (for RESTful APIs), Node.js.
- Machine Learning Frameworks: TensorFlow, Py Torch for deep learning models (CNNs, LSTMs).
- Database: MySQL, MongoDB, Firebase (for user data and crop-related data storage).
- Cloud Platform: AWS, Google Cloud, or Microsoft Azure for hosting the models and database.

Workflow

- Step 1: The farmer uploads an image or provides environmental data.
- Step 2: The system processes the image using the trained CNN model to detect crop diseases or uses environmental data for disease prediction.
- **Step 3:** The system provides a prediction on the disease type and its severity along with actionable management strategies.
- **Step 4:** Notifications are sent to the farmer with detailed recommendations.
- Step 5: The farmer provides feedback (if any) to improve future predictions.

Scalability

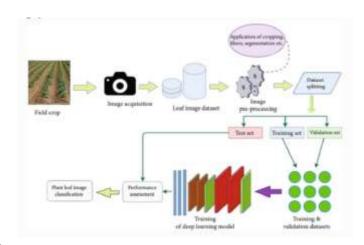
The system should be scalable to handle large datasets and an increasing number of users. Using cloud-based solutions and microservices can help in scaling the application.

Security

Authentication: Ensure secure access for users with login systems using OAuth, JWT, etc.

Data Encryption: Encrypt sensitive data like user information and disease prediction data to protect user privacy.

Secure Data Transfer: Use HTTPS to secure the communication between the client and the server.


VII. SYSTEM DESIGN ARCHITECTURE

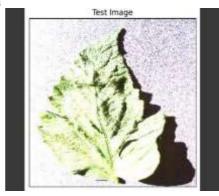
The system design architecture for an AI-driven crop disease prediction and management system consists of multiple layers and components, ensuring efficient processing of data, real-time predictions, and seamless interaction between the system and the end users (farmers). Below is the architecture broken into various components:

System Overview

The system architecture follows a multi-layered approach, consisting of the following key modules:

- User Interface (UI): Allows users (farmers) to interact with the system for disease detection, monitoring, and receiving recommendations.
- Backend Services: Processes the data, interfaces with machine learning models, and handles system logic.
- Machine Learning Models: The AI-powered models responsible for disease prediction based on input data.
- Data Layer: The storage layer where crop images, disease data, and environmental data are stored.
- Notification System: Sends alerts and updates to users (farmers) about disease predictions and recommended actions.

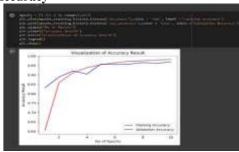
Applications


The crop disease prediction and management system driven by AI has huge potential in agriculture. They are applied in checking the outbreaks of diseases at the earliest through image analysis from drones and cameras and make intervention at the right time possible. AI also predicts disease outbreaks by analysing weather and historical data for better Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

preparation of farmers. The precision pest and disease management deploy the AI application for treatments only where required and minimizes use of chemicals along with costs. IoT sensors bring in the capability to do real-time crop health monitoring and can thus detect environmental conditions that may one day be a disease threat. AI empowers automated diagnosis from images of diseases, leading to fast accurate results. AI also optimizes irrigation so that no conditions favourable to disease development exist, predicts crop yields, and assesses how much diseases impact production. It supports IPM by advising the most effective control methods of pests. AI also enhances supply chain efficiency through better planning of the harvest and distribution. It also provides decision-support tools for farmers. Concerning climate resilience, AI predicts how climate changes may affect diseases, allowing farmers to act on that basis. It further aids in accuracy breeding, producing disease-resistant crops, and allows for uses of drones to monitor fields efficiently.

This improves efficiency in farming, reduces reliance on chemicals, minimizes losses for crops, and supports sustainable agriculture

VIII. RESULTS & KEY FEATURES


Test Data

Result

Result Accuracy

V. CONCLUSION AND FUTURE WORK

As a result, AI-driven crop disease prediction and management systems provide most benefits for improving agricultural productivity, sustainability, and disease control. This enables early detection and monitoring of the onset of a disease in real time with accurate management, thus minimizing losses through reduced chemical usage and proper resource optimization. Crop disease management technologies also enable better decision-making and create proactive opportunities for disease management, resulting in more resilient agricultural practices.

Looking forward, then, future research focus should be on the quality of the data obtained, extension of the models to cross wide generality ranges of crops and climates, and practical and affordable tools being made available to farmers. Intensification and more width of AI integration into local agricultural practices and availability of AI tools in remote areas would add to this intent. In the future, research should be conducted on developing explainable AI so that more trust and transparency are engendered in the systems by people and improving climate adaptation models to tackle challenges of climate change.

REFERENCES

- 1. Bansal, S., et al. (2020). Precision Agriculture: AI for pest and disease management. Agricultural Systems, 179, 102739.
- 2. Chen, Y., et al. (2020). AI-enabled predictive modelling for crop disease management in precision agriculture. Frontiers in Plant Science, 11, 127.
- 3. Singh, S., et al. (2020). AI-powered disease detection in crops: A review of methodologies and applications. Computers and Electronics in Agriculture, 169, 105232.
- 4. Zhao, L., et al. (2021). "Real-time crop disease detection using drone imagery and deep learning". Computers in Industry, 133, 103483.
- 5. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). "A review on the application of deep learning in agriculture. "Computers and Electronics in Agriculture, 147, 70-90.

International Journal of Scientific Research & Engineering Trends

Volume 11, Issue 2, Mar-Apr-2025, ISSN (Online): 2395-566X

- 6. erentinos, K. P. (2018). "Deep learning models for plant disease detection and diagnosis. "Computers and Electronics in Agriculture, 145, 311-318.
- 7. Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). "Using deep learning for image-based plant disease detection. "Frontiers in Plant Science, 7, 1419.
- 8. Ramcharan, A., et al. (2019). "A mobile-based deep learning model for cassava disease diagnosis." Frontiers in Plant Science, 10, 272.
- 9. Picon, A., et al. (2019)."Deep learning for smart agriculture: Towards automated crop disease detection. "Journal of Intelligent & Fuzzy Systems, 36(5), 4863 4872.
- 10. Saleem, M. H., Potgieter, J., & Arif, K. M. (2019)."Plant disease detection and classification by deep learning: A review. "Computers and Electronics in Agriculture, 162, 212-225.
- 11. Sannakki, S. S., Rajpurohit, V. S., Nargund, V. B., & Kulkarni, P. (2016).
- 12. "Diagnosis and classification of grape leaf diseases using neural networks. "International Journal of Computer Applications, 124(16