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Abstract- Cardiovascular disease (CVD), despite the significant advances in the diagnosis and treatments, still represents the 

leading cause of morbidity and mortality worldwide. In order to improve and optimize CVD outcomes, artificial intelligence 

techniques have the potential to radically change the way we practice cardiology, especially in imaging, offering us novel tools 

to interpret data and make clinical decisions. AI techniques such as machine learning and deep learning can also improve 

medical knowledge due to the increase of the volume and complexity of the data, unlocking clinically relevant information. 

Likewise, the use of emerging communication and information technologies is becoming pivotal to create a pervasive 

healthcare service through which elderly and chronic disease patients can receive medical care at their home, reducing 

hospitalizations and improving quality of life. The aim of this review is to describe the contemporary state of artificial 

intelligence and digital health applied to cardiovascular medicine as well as to provide physicians with their potential not only 

in cardiac imaging but most of all in clinical practice. 
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I. INTRODUCTION 
 

According to the fifth edition of the European 

Cardiovascular Disease Statistics (published in 2017 by 

the European Heart Network (EHN)), cardiovascular 

diseases (CVD) represent the leading cause of death and 

morbidity in Europe. In 2015, over 85 million people were 

affected by CVD (48% men and 52% women) in the 

continent, leading to 3.9 million deaths (45% of all causes 

of death). In the European Union (EU), 49 million people 

were dealing with CVD, out of which over 1.8 million 
resulted in death (European Cardiovascular Disease 

Statistics 2017). 

 

CVD represent a significant economic cost for society, 

around $351.2 billion in US, chronically affecting patients’ 

quality of life [1]. The EU has estimated that the overall 

yearly cost amounts to €210 billion, allocating around 53% 

to healthcare costs (€111 billion), with 26% related to 

productivity losses (€54 billion), and the remaining 21% 

(€45 billion) to the informal care of people with CVD 

(European Cardiovascular Disease Statistics 2017). 
 

In 2017, in Italy, 4.4 patients per every thousand 

inhabitants suffer from some kind of cardiovascular 

disease and 232 992 people died from it (Istat data). The 

incidence of disability in those who survived was very 

high, chronically impacting patients’ quality of life and 

healthcare costs. The Italian pharmaceutical industry uses 

23.5% of its fund expenditures for CVD treatment drugs 

(https://www.epicentro.iss.it). This data supports the fact 

that CVD, despite the significant advances that occurred in 

the diagnosis and treatments, are still the most common 

cause of morbidity and mortality in Europe. 

 

Early accurate diagnosis and prognosis evaluation are key 
to improve and optimize CVD outcomes.Artificial 

intelligence (AI) techniques such as machine learning 

(ML), deep learning (DL), and cognitive computer can 

play a critical role in the early detection and diagnosis of 

CVD, as well as outcome prediction and prognosis 

evaluation. Widespread data acquisitions of electronic 

health records (EHRs) have generated massive datasets 

(quantitative, qualitative, and transactional data) that 

require AI techniques to be interpreted [2]. 

 

AI techniques can also assist physicians to make better 

clinical decisions enabling early detection of subclinical 
organ dysfunction, through the use of clinically relevant 

information that can be found in the massive amount of 

data and, thus, improving quality and efficiency of 

healthcare delivery [3]. 

 

Telemedicine and mobile health (mHealth) are also 

becoming important in the prevention of CVD and general 

improvement of healthcare [4–6]. Likewise, Internet of 

Things (IoT) can be a radical game changer in heart 

disease healthcare environment; patients’ acquired data 

can be sent to remote physicians who will be able to 
constantly know patients’ physical status in real time [7, 

8].  

 

The aim of this review is to describe the contemporary 

status of artificial intelligence applied to cardiovascular 

https://www.epicentro.iss.it/
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medicine and its potential to change the way of how we 

generate knowledge, interpret data, and make decisions. 
 

II. ARTIFICIAL INTELLIGENCE- A 

CONCEPT 
 

Artificial intelligence (AI) is a computer system able to 

perform tasks that ordinarily require human intelligence 

such as receiving perceptions from the environment and 

performing actions using algorithms, heuristics, pattern 

matchings, rules, deep learning, and cognitive computing. 

A group of pioneers first coined the term in 1956 at 

Dartmouth College in New Hampshire, USA.  

 

In 1958, Rosenblatt [9] developed the first precursor to 

current neural networks: the perceptron, a “brain model” 
for supervised learning of binary classifiers. In 1986,  

 

Rymelhart et al. [10] described a new learning procedure, 

backpropagation, for networks of neurone-like units able 

to learn any function. Although big progress was made 

through the’90s and 2000s, only in 2012, when Krizhevsky 

and colleagues won the ImageNet ILSVRC contest with a 

deep convolutional neural network to classify objects 

using GPUs (graphics processing units) to accelerate 

network training, an explosion of research activity in the 

neural network field started to happen [11, 12]. 
 

The continuous development of AI techniques, mainly in 

the subdomains of ML and DL, has quickly attracted the 

attention of clinicians to create new integrated, reliable, 

and efficient methods for providing quality 

healthcare.Imaging is the focus of interest and research 

when it comes to AI in cardiovascular medicine. The 

advantages of using ML models in echocardiography lie in 

the reduction of inter- and intraoperator variability as well 

as in the provision of additional predictive information that 

may be too subtle to be detected by human eyes [13–15]. 

 
Another interesting potential application of AI techniques 

could be in cardiac CT, for patients with suspected CAD. 

For patients suffering from these conditions, the 

association between cardiac CTand ML algorithms has 

shown a potential in clinical practice to take noninvasive 

approaches and to detect functional information beyond 

atherosclerotic plaque characterization [16–18]. Besides 

diagnostic imaging, another interesting application of ML 

in cardiology could be in the automatic detection of 

anomalies in electrocardiograms. 

 
2.1. Machine Learning. Machine learning (ML) is a 

subfield of AI intended to “teach” computers to analyze 

vast datasets in a quick, accurate, and efficient way, 

through the use of complex computing and statistical 

algorithms [13]. These algorithms are able to identify 

patterns on new data that match with existing data they 

already “learned from” and make predictions based on 

them [19].  

In ML, an input x and an output y follow a functional 

relationship y f(x), called the predictive model [19].ML 
can be classified into three groups based on the way the 

predictive model learns and accumulates data [20–24]. 

 

 Supervised learning (e.g., logistic regression, SVM, 

and neural networks): uses human labelled datasets, 

generally used to develop models that predict or 

classify future events or find the most relevant 

variables to the outcome. Both x and y are known and 

the predictive model improves and benefits from data 

training. 

 Unsupervised learning (e.g., cluster analysis): the 

software is capable of finding hidden structures in 
datasets, without prior categorization of the training 

set (only x is known). This has the potential to 

identify novel relationships within the data. 

 Reinforcement learning: reward-based learning 

(typically used in gaming and robotic applications), 

based on interactions with an environment in which 

positive and negative reinforcements contribute to the 

improvement of the predictive model. It requires the 

machine to be equipped with systems and tools that 

can not only improve its learning but also understand 

the characteristics of the surrounding environment, 
such as sensors, cameras, and GPS. 

 

2.2. Deep Learning. Deep learning (DL) is a supervised 

ML technique that uses neural networks and is 

characterized by automated algorithms that are able to 

extract meaningful patterns from data collections [4]. It 

mimics the complexity of a human brain, being able to 

learn complex hierarchical representations from data that 

has multiple levels of abstraction [4, 25].  

 

The programmer enters known data into the machine in a 
way that allows algorithms to respond correctly even when 

faced with fully new data. The neural network learns 

through experience, reads data, builds hierarchical 

architectures, and provides advanced input-output levels.  

 

It can capture complex nonlinear relationships between 

input-output outcome variables. The average error of 

outcomes and their predictions can be minimized by 

estimating the weights of input and outcome data [3]. 

 

Physicians diagnose based on their knowledge, experience, 

and cultural background. Deep learning could be very 
successful at this point, broadening and improving medical 

knowledge, particularly for nonexpert physicians. 

 

DL can explore more complex nonlinear patterns in the 

data than classic neural networks by using more hidden 

layers. For this reason, the application of DL in the 

medical research field has recently become popular due to 

the increase in volume and complexity of data, particularly 

for the imaging analysis area [3, 26]. DL is also playing a 

prominent role in Facebook’s image recognition program, 
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speech recognition in Apple’s Siri and Amazon’s Alexa, 

Google brain and robots, etc. [27]. 
 

In the medical context, the most widespread deep learning 

algorithms are convolution neural networks (CNN), 

recurrent neural networks, deep belief networks, and deep 

neural networks. 

 

III. ELECTRONIC HEALTH: MOBILE 

HEALTH AND IOT 
 
Electronic health (eHealth), or digital health, refers to the 

use of emerging communication and information 

technologies, basically the Internet, and aims to improve 

health and healthcare [5]. 

 

3.1. Mobile Health. Mobile health (mHealth) is a subfield 

of eHealth, characterized by the use of mobile and wireless 

technologies to improve healthcare. 

 

When it comes to the prevention of CVD, mobile devices 

are a great promise especially thanks to dietary self-
monitoring apps, physical activity monitors, and blood 

pressure (BP) monitors. These applications can help 

patients achieve a healthful weight, improve physical 

activity, quit smoking, control blood glucose, and manage 

BP and lipids to achieve target levels [5, 28–32]. 

 

Apple, in collaboration with Stanford Medicine, 

successfully conducted a research study [33] to evaluate 

whether the Apple heart Study App (a mobile medical app 

that analyzes pulse rate data) could use data collected on 

the Apple Watch to identify irregular heart rhythms (atrial 

fibrillation and other arrhythmias). This study paved the 
way to a novel large-scale pragmatic study, in which 

outcomes and findings can be reliably assessed with user-

owned devices. 

 

mHealth became also important in cardiovascular 

medicine with the development of portable computer 

devices and miniaturized cardiac imaging devices. 

Moreover, “big data” from mHealth and telemedicine can 

be integrated with AI techniques, helping cardiologists 

make better clinical decisions [4, 34, and 35]. 

 
3.2. Internet of Things. The Internet of Things (IoT) is the 

network of physical objects, devices, vehicles, buildings, 

and other items that are embedded with electronics, 

software, sensors, and network connectivity that enables 

the collection and exchange data [8]. 

 

The general architecture of IoT medical applications 

consists of three layers: the sensing layer composed of 

sensors worn or carried by patients, the transport layer 

composed of connecters, and the application layer 

composed of remote server [7]. Thanks to these, acquired 

data is transmitted to a remote server and saved in a 
database or displayed in real time by physicians. 

It is especially useful for elderly and chronic disease 

patients, shifting healthcare from a passive activity into a 
pervasive one. In cardiovascular medicine, physicians are 

able to monitor patients in real time thank to the collection 

of data such as blood pressure, ECG, and SpO2, being 

aware of patient’s health conditions and diagnosing or 

forecasting dangerous events.  

 

This will radically change patient’s quality of life: they 

will be able to lead a more normal life, receiving medical 

care at their homes and thus reducing hospital visit 

frequencies. When IoT techniques are combined with 

realtime analytical algorithms, they can also become a 

mean to warn about potential attacks in advance. 
 

In the heart failure care field, wearable sensors coupled 

with ML analytics can be potentially used to improve 

clinical outcomes and reduce hospitalizations [36–38]. 

Heart failure is a chronic disease with acute exacerbations 

that reports high rates of hospitalization and mortality year 

after year (one-year hospital readmission rate of more than 

50%, and one-year mortality rates of 30%) [39] And 

involves a worldwide expenditure of around $31 billion 

[40] yearly.  

 
It is estimated to affect over 26 million adults worldwide 

[41], 6.5 million only in the United States [42], 14 million 

in Europe, and 1 million in Italy, with an increasing 

prevalence rate related to aging (over 10% of the patients 

are 70 years old or older) [43]. It is the leading cause of 

hospitalization among people over the age of 65 [44] in 

Italy, with over 190,000 hospitalizations every year and an 

expenditure of at least €500 million [45] with 9.4 days of 

hospital stay on average [45]. Due to the fact that the 

patient care cost increases in relation to the severity of the 

disease, for NYHA IV patients, it is 8 to 30 times higher 

than that for NYHA II patients [46]. 
 

Despite the big progresses in therapies and prevention 

techniques, the incidence of rehospitalization is of 25% in 

a 1-month period and increases to c.50% in a 6-month [46] 

period, with the mortality rate still being c.50% in a 5-year 

period after diagnosis [47]. 

 

Due to the high cost of hospitalizations (the average length 

is 5–10 days) [41] and the high rates of morbidity and 

mortality (especially between the elderly population), the 

potential of IoT-based devices stands out. In the LINK-HF 
study [36], it was demonstrated that machine learning 

models that use data from VitalPatch®, a wearable sensor, 

can more accurately forecast heart failure exacerbation 

than invasive devices.  

 

The sensor layer used in the mentioned study was made up 

of a multisensory patch placed on the chest that recorded 

physiological data. Data was uploaded via smartphone 

(transport layer) to a cloud analytics platform (application 

layer) which used ML algorithms to analyze the collected 
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data. Sensible Medical Innovations Ltd. (Netanya, Israel) 

developed ReDS™ [48], a wearable hemodynamic 
noninvasive technology able to detect the amount of lung 

fluid concentration. Comparing ReDS™ technology to 

high-resolution chest computed tomography (CT) in 

patients with acute heart failure resulted inReDS™ being 

more suitable for the management of acute events 

recurrence in recently discharged patients [49]. 

 

With the aim to significantly improve heart failure 

patients’ life, Vectorious has created V-LAP™. It is the 

first battery-less wireless microcomputer for cardiac 

monitoring, a novel Left Atrial Pressure monitoring system 

with a realtime tracking method based on AI that 
introduces remote heart failure care. By tracking trends of 

left atrial pressure readings with theV-LAP™, physicians 

can detect heart failure exacerbation before the onset of 

symptoms, change treatments, or modify doses of 

medication in order to reduce adverse complications 

(https://www.vectoriousmedtech. com). 

 

Sievert et al. [50] successfully performed the first human 

experience with the V-LAP™. The V-LAP™ sensor was 

implanted using a transseptal access, with angiographic 

and echocardiographic guidance, and showed successful 
results in NYHA Class III patients regarding to 

implantation safety and feasibility.  

 

Other invasive device developed to manage HF 

hospitalizations was CardioMEMS™ HF System (Abbott, 

Lake Bluff, Illinois, United States): a permanent wireless 

pulmonary artery pressure (PAP) monitoring system. The 

device granted a big impact on the reduction of 

hospitalizations, as it allowed a tailored online 

management designed through the PAP data. The 

CHAMPION trial demonstrated effectiveness in the use of 

CardioMEMS™, reducing on average a 33% of the HF 
hospitalizations in NYHA Class III Heart Failure Patients 

over a follow-up period of 18 months [38]. 

 

IV. APPLICATIONS IN 

CARDIOVASCULAR IMAGING 
 

AI techniques such as machine learning, deep learning, 

and cognitive computing have the potential to change the 

way in which cardiology and cardiovascular medicine are 

practiced (e.g., how we generate knowledge, interpret data, 

and make decisions), especially in cardiovascular imaging. 

 

1. Echocardiography: 
The role of echocardiography is crucial in the diagnosis 

and management of cardiovascular diseases and accurate 

quantitative assessment of cardiac structures and functions. 

However, it still depends on the interoperator variability 

and experience. AI tools, in particular machine learning, 

provide new possibilities to enhance the accuracy of image 

interpretation in clinical echocardiography practice, 

especially between nonexpert clinicians.  

ML models trained to learn different features in an image 

are able to recognize a wide range of specific disease 
patterns, taking account of each pixel and their 

relationships [13]. 

 

ML models bring the potential to interpret, in an 

automated manner, the unused data that is generated by the 

advent of multidimensional imaging modalities (such as 

3D echocardiography and speckle tracking) [13]. This 

leads to advantages in the reduction of analysis time and in 

the increase of reproducibility [4]. 

 

3D echocardiographic automated analysis can be 

performed thanks to HeartModelA·I·, a software package 
that uses a model-based algorithm. The algorithm that is 

integrated in the software is capable of automatically 

calculate the following in few seconds: (i) the volumes of 

the left chambers (atrium and ventricle), (ii) the systolic 

flow, and (iii) the ejection fraction of the LV from the data 

acquired with 3D echocardiographic techniques (https://w 

ww. ultrasound-heartmodel.it).  

 

In addition, the software also obtains simultaneously the 

atrium volume from the same eco-3D dataset, providing a 

more complete assessment of the function of the atrium, if 
we compare it to conventional measurement systems [51]. 

Another important advantage of this algorithm is that it has 

been designed to analyze eco-3D datasets acquired in 

single-beat mode. This can be particularly useful in 

patients whose 3D analysis is difficult, as could be the case 

of patients with frequent arrhythmias or those with 

breathing difficulties. 

 

A wide range of cardiovascular diseases can benefit from 

ML models in clinical echocardiography practice. 

Sengupta et al. [52] developed a cognitive 

machinelearning algorithm, trained with speckle tracking 
echocardiographic (STE) data, to differentiate constrictive 

pericarditis from restrictive cardiomyopathy. This study 

demonstrated the feasibility and effectiveness of a 

cognitive computing machine learning approach for 

automated interpretations of STE data. 

 

Narula et al. [14] also showed that supervised learning 

algorithms could differentiate athlete heart and 

hypertrophic cardiomyopathy, using STE data, more 

accurately than traditional measure systems. Another 

potential field of application of ML models in 
echocardiography is heart valve disease (HVD) [53, 54]. 

HVD is an increasingly common pathology which can 

benefit from cardiac imaging ML integration through early 

diagnosis, treatment, or surgery planning [54].  

 

Playford et al. [55] evaluated whether AI could impute the 

aortic valve area (AVA) in aortic valve stenosis from other 

echocardiographic data, without the need of measuring left 

ventricular outflow tract (LVOT); a high accuracy (0.95) 

was obtained.  

https://www.vectoriousmedtech.com/
https://www.vectoriousmedtech.com/
https://www.ultrasound-heartmodel.it/
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In order to assess mitral regurgitation severity, 

Moghaddasi and Nourian [56] introduced novel features to 
detect micropatterns out of echocardiography images. 

Their proposed method achieves 99.38% sensitivity and 

99.63% specificity rates in the detection of MR severity. 

 

Ortiz et al. in 1995 [57] leaded the way to the application 

of AI tools in the field of heart failure (HF). They used a 

neural network method, based on echocardiographic data, 

to assess a one-year prognosis in a HF patient. Their work 

concluded that neural networks could more accurately 

predict outcomes than linear discriminant analysis 

(accuracy of 90% and sensitivity of 71.4% vs 67.4% and 

67.5%, resp.). 
 

Subsequent studies also showed that echocardiographic 

data and clinical factors can be used by AI tools to 

facilitate HF diagnosis, classification, severity estimation, 

and prediction of adverse events [21, 58–60], particularly 

in patients with preserved ejection fraction [61, 62]. 

Recently, Ouyang et al. [63] developed and performed 

successfully with accuracy over 0.92 a novel video-based 

deep learning algorithm: EchoNet-Dynamic. This model, 

using 3D convolutional neural network, is able to assess 

from echocardiogram videos alone cardiac function 
(segmentation of left ventricle and estimation of ejection 

fraction) with accuracy equal to or better than human 

experts. 

 

2. Magnetic Resonance Imaging: 

In cardiac MRI, ventricular segmentation is one of the 

fields with more potential for the application of ML 

models. It makes it possible to quantify the volumetry and 

improve the efficiency and reproducibility of clinical 

assessments [64–66]. Avendi et al. [65] used deep learning 

algorithms (i.e., convolutional neural networks and stacked 

autoencoders) trained through cardiac MRI datasets, for 
the automatic detection and segmentation of right 

ventricular (RV) chamber foreseeing the accuracy of these 

algorithms. Likewise, for left ventricular segmentation, 

several automated neural networks have been successfully 

developed, especially for cardiac cine MRI [66–68]. 

Another application of ML in cardiac MRI takes place in 

the detection of subacute or chronic myocardial scar [69]. 

 

Dawes et al. [70] used supervised machine learning of 3D 

patterns of systolic cardiac motions, to predict 

(independent of conventional risk factors) adverse 
outcomes (early death or right heart failure) in patients 

with pulmonary diseases. 

 

3. Cardiac Computed Tomography.  

ML image analysis techniques in cardiac CT are 

increasingly used in the diagnosis and risk assessment of 

coronary artery disease (CAD) and atherosclerosis (e.g., 

coronary artery calcium scoring and fractional flow 

estimation). Coronary computed tomographic angiography 

(CCTA) is a noninvasive modality to detect coronary 

artery disease. It generally overestimates stenosis severity 

compared to invasive angiography, and angiographic 
stenosis does not necessarily imply hemodynamic 

relevance when fractional flow reserve (FFR) is used as a 

reference [71]. Therefore, several ML models have been 

developed [17, 18, and 71] to determine noninvasive FFR 

and improve the performance of CCTA by correctly 

reclassifying stenosis that are hemodynamically 

nonsignificant. 

 

In order to characterize coronary plaque, automatic 

coronary artery calcium scoring in CCTA using ML 

models provide added clinical value by reducing false 

positive and interobserver variability [72, 73]. Wolterink et 
al. [73] used supervised machine learning to directly 

identify and quantify coronary artery calcification (CAC). 

Gonzales et al. [74] used convolutional neural network to` 

calculate Agatston score from CT without prior 

segmentation of coronary artery calcification. 

 

Another application of ML on cardiac CT is in the 

prognosis [75] and myocardial infarction detection, 

through the use of texture analysis methods [76]. 

 

Preliminary Results of the SMARTool Project [77] 
introduced a novel concept on the management of CAD 

patients (diagnosis, prognosis, and treatment) based on ML 

risk stratification and Computational Biomechanics.  

 

ML analysis was performed from retrospective and 

prospective data (clinical, biohumoral, CCTA imaging, 

lipidomics, etc.) in order to discriminate low- and medium-

to-high risk patients. The CAD diagnosis module was 

based on the 3D reconstruction of the coronary arteries and 

the noninvasive estimation of smartFFR, whereas CAD 

predictions are based on complex plaque growth 

computational models. 

 

4. Applications in Electrocardiography:  

Besides diagnostic imaging, electrocardiography is another 

field that could also benefit from the application of ML to 

its activities. The electrocardiogram (ECG) is the most 

widely used tool to identify abnormalities in the electrical 

heart activity. ML models, especially the subfield DL, 

have enabled the automatic detection of anomalies in 

electrocardiograms, reducing the time of interpretation and 

the dependency on individual variability [78, 79]. 

 
Supervised learning algorithms have been largely 

developed to be applied on heart rhythm classification [80, 

81]. The possibility to both train and test the different 

algorithms is provided by public databases such as MIT-

BIH Arrhythmia from Physionet Project (https://phys 

ionet.org/ physiobank/database/).  

 

In contrary, in the unsupervised learning analysis, the 

algorithms process datasets that lack a default 

categorization [82]. Data that has not previously been 

https://physionet.org/physiobank/database/
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labelled is treated with this approach and afterwards 

grouped with different methods into ECG phenotypes 
subgroups [83, 84]. 

 

In particular, Lyon et al. [79], putting together data with 

similar structures, have identified and classified ECG 

phenotypes associated with arrhythmic risk markers in 

hypertrophic cardiomyopathy. DL optimizes ECG 

interpretation performing patient stratification as 

documented by recent reports [85, 86]. Interestingly, 

Hannum et al. have trained a 34-layer deep neuronal 

network (DNN) as a DL model, to identify and classify 12 

different types of arrhythmia. The obtained results are 

excellent compared to a dataset of recordings annotated by 
a certified board of cardiologist [85]. 

 

Similarly, in the study of Attia et al., they trained a 6layer 

DNN to detect left ventricular systolic dysfunction through 

the performance of a stratification superior to B-type 

natriuretic peptide (BNP) screening blood tests [86]. 

 

V. CONCLUSION AND FUTURE 

PROSPECTS 
 

Physicians have both a big opportunity and responsibility 

to actively track the continuous developments of AI 

techniques and use and apply them according to their 
needs, in order to find concrete supporting tools for their 

clinical practices. The onset of artificial intelligence in the 

cardiovascular field is bringing wide possibilities also to 

provide new personalized cares.  

 

The way we practice cardiology, especially in the cardiac 

imaging field, is going to change and physicians need to be 

ready. mHealth and telemedicine are establishing new 

connections between patients and physicians, switching 

healthcare from a passive activity into a pervasive one.  

Physicians should not be afraid of the integration of AI 

into cardiology but should embrace it, since their expert 
knowledge will keep being vital under any circumstances. 
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