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Abstract – An accidental fire is a mishap that could be either man-made or natural. Accidental fire occurs frequently and 

can be controlled but may at times result in severe loss of life and property. Fire detection using hand-crafted features is a 

tedious and time-consuming method. The accuracy of the existing system using Alex net is 78% to 92%.The Project main idea 

is to detect the fire as soon as possible .The main concept used in the project is facenet pertained model. It is recognition  

technique to detect the fire on the surroundings. It uses smaller convolutional kernels and contains no dense, fully connected 

layers, which helps keep the computational requirements to a minimum. Despite its low computational needs, the experimental 

results demonstrate that our proposed solution accuracies that are comparable to other, more complex models, mainly due to 

its increased depth. The embedded processing capabilities of smart cameras have given rise to intelligent CCTV surveillance 

systems. Fire is the most dangerous abnormal event, as failing to control it at an early stage can result in huge disasters, 

leading to human, ecological and economic losses. Inspired by the great potential of CNNs, propose a lightweight CNN based 

on the SqueezeNet architecture for fire detection in CCTV surveillance networks. A Project approach can both localize fire 

and identify the object under surveillance. The accuracy of the system using Facenet is 98%. 
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I.  INTRODUCTION 
  

The Rapid Growth of Urbanization increase the House, 

Building and Theme Parks. When there is a fire, it will 

cause so many damage for property and also loss of 

human life. To Avoid this type of incident different types 

of technologies are invented. They are mainly based on 

sensor. It detect the fire only it come closer range of the 
sensor. So Sometime fire get enlarge and make a severe 

damage. we use deep Learning is a subfield of machine 

learning concerned with algorithms inspired by the 

structure and function of the brain called artificial neural 

networks. According to incomplete statistics, there were 

312,000 fires in the country in 2016, with 1,582 people 

killed and 1,065 injured, and a direct property loss of 3.72 

billion dollars. Fire detection is vitally important to 

protecting people’s lives and property. The current 

detection methods in cities rely on various sensors for 

detection  including smoke alarms, temperature alarms, 

and infrared ray alarms. Although these alarms can play a 
role, they have major flaws. First, a certain concentration 

of particles in the air must be reached to trigger an alarm. 

When an alarm is triggered, a fire may already be too 

strong to control, defeating the purpose of early warning. 

Second, most of the alarms can only be functional in a 

closed environment, which is ineffective for a wide space, 

such as outdoors or public spaces. Third, there may be 

false alarms. When the non-fire particle concentration 

reaches the alarm concentration, it will automatically 

sound the alarm. Human beings cannot intervene and get 

the latest information in time. To prevent fires and hinder 
their rapid growth, it is necessary to establish a 

monitoring system that can detect early fires. Establishing 

a camera-based automatic fire monitoring algorithm and 

FaceNet model. Greatly reducing the cost increases the 

economic feasibility of such systems. In the preprocessing 

module, the frame difference detection operates quickly 

and does not include complex calculations, has low 

environmental requirements, and does not need to 

consider the time of day, weather, and other factors. The 

camera-based fire monitoring system can monitor the 

specified area in real time through video processing. 
When a fire is detected based on the video, it will send a 

captured alarm image to the administrator. The 

administrator makes a final confirmation based on the 

submitted alarm image. For example, when an accident 

occurs on a highway and causes a fire, based on the image 

transmitted by the detection algorithm, one can 

immediately rescue the victims, saving precious time and 

minimizing damage. We combine motion detection based 

on frame difference with color detection based on the 

RGB/HSI model. Color detection is only for regions of 

motion that the motion detection phase is completed. Our 

method has improved the precision and reduced 
redundant calculation. In addition, we have improved the 

frame difference method. According to the spatial 

correlation between consecutive image frames, we have 
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improved the traditional methods of detecting fire from 

one single image frame.  

 

Temporal information is combined with the flame 

features through a space-time flame centroid stability-

based detection method. At the same time, we combine 

the data obtained during the fire preprocessing phase to 

reduce computational redundancy and computational 

complexity. We extracted various flame features, spatial 

variability, shape variability, and area variability. We 

used the support vector machine to train, complete the 
final verification, reduce the false negatives rate and false 

positives rate, and improve the accuracy.  

 

II. EXISTING SYSTEM 
 

We consider several candidate architectures, with 

reference to general object recognition performance 
within [12], to cover varying contemporary CNN design 

principles [13] that can then form the basis for our 

reduced complexity CNN approach. AlexNet [14] 

represents the seminal CNN architecture comprising of 8 

layers. Initially, a convolutional layer with a kernel size of 

11 is followed by another convolutional layer of kernel 

size 5. The output of each of these layers is followed by a 

max pooling layer and local response normalization. 

Three more convolutional layers then follow, each having 

a kernel size of 3, and the third is followed by a max 

pooling layer and local response normalization. Finally, 
three fully connected layers are stacked to produce the 

classification output.  

 

VGG-16 [15] is a network architecture based on the 

principle of prioritizing simplicity and depth over 

complexity – all convolutional layers have a kernel size of 

3, and the network has a depth of 16 layers. This model 

consists of groups of convolutional layers, and each group 

is followed by a max pooling layer. The first group 

consists of two convolutional layers, each with 64 filters, 

and is followed by a group of two convolutional layers 

with 128 filters each. Subsequently, a group of three 
layers with 256 filters each, and another two groups of 

three layers with 512 filters each feed into three fully 

connected layers which produce the output. Here we 

implement the 13-layer variant of this network by 

removing one layer from each of the final three groups of 

convolutional layers (denoted VGG-13). 

 

III. PROPOSED SYSTEM. 

 
Our Project idea is to detect the fire and avoid the 

damages and loses in human life and properties. Fire can 

be detected using video surveillance in deep learning 

using Convolution Neural Network (CNN) Algorithm. 
This Algorithm has four-layer Convolution layer, max 

pooling layer and ReLU. Convolution layer takes input as 

matrix representation and then features of the image are 

extracted within this layer using filter. The output of the 

convolution layer is passed into Rectified Linear Unit 

(ReLU) Layer. The ReLU Layer extract positive values 

portion from matrix based on activation function. The 

output is passed through the Max pooling function to 

obtained maximum value for each patch of the feature 

map. Now Using fully connected layer the output is 

compared with the fire dataset  and the result is produced.  

 

IV. MODULE DESCRIPTION 
 

1. Data Collection 

The anomaly detection system applies Convolutional 

Neural Network (CNN) to classify 5000 data sets and 

provides major developments in the experimental result.  

The CNN Model gives the detection result based on 

features established by training dataset. A Deep Learning 

is established on event classifier trained through 4000 

frames of videos. First, randomly selected 1000 images 
per event category are a training set and 1000 images are 

a validation set for 4 categories. The CNN model 

accomplished 100% anomaly detection accuracy on the 

validation data set after training. 

 

2. Feature Extraction 

In the proposed system, the convolutional network model 

is constructed with some crucial parameters. The three 

convolution layers are implemented by the activation 

function of layers namely, Relu and max pooling layer.  

In this layer, it has filters.  The kernel size is 2×2.  The 
model is trained for four classes. Since there are four 

neurons in the output layer. The special activation 

function of this network for classifying the dataset is 

categorical-cross entropy. 

 

3. Training 

The training phase of this work has 6 epochs and 4000 

training samples to implement the model for extracting 

crucial features and good training. The needed dataset of 

video frames are stored in a stack array and modified size 

as 150 x150. The stacked array of the dataset is changed 

into a batch file and provides data to the CNN model for 
the training process. The model extracts the features 

through epochs to detect the anomaly using separate 

labels (0,1,2,3) for anomalies   namely.  

Fig 1.1 
 

 

C (×106) A (%) A:C fps 

Alexnet 71.9 91.7 1.3 4.0 

FireNet 68.3 91.5 1.3 17.0 

InceptionV1 6.1 93.4 15.4 2.6 

InceptionV1-

OnFire 

1.2 93.4 77.9 8.4 

Chenebert et al. [17] - - - 0.16 
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4. Testing 

The final phase of testing in the CNN model detecting the 
anomaly is in different video events is taken and 

converted these into frames. 100 datasets of video events 

are stored in a stack array of a batch file and modified size 

as 150x150. The event video frames are collected from 

different events namely Sports, Protest, Temple, etc.  

From each video, 30 frames are collected and stored for a 

test container. In that, 10 false datasets are collected from 

other videos and stored in the test container. From the 

batch file, the testing data is sent to the trained model. 

The CNN model finds four categories of the anomaly and 

shows anomaly name for each category correctly. 

 

V.EVALUATION 
 

For the comparison of the simplified CNN architectures 

out- lined we consider the True Positive Rate (TPR) and 

False Pos- itive Rate (FPR) together with the F-score (F), 

Precision (P) and accuracy (A) statistics in addition to 
comparison against the state of the art in non-temporal 

fire detection [6]. We ad- dress two problems for the 

purposes of evaluation:- (a) full- frame binary fire 

detection (i.e. fire present in the image as whole - 

yes/no?) and (b) superpixel based fire region local- ization 

against ground truth in- frame annotation [8]. 

Table-I: Statistical performance - full-frame fire 

detection. 

  
 TPR FPR F P A 

AlexNet 0.91 0.07 0.93 0.95 0.92 

InceptionV1 0.96 0.09 0.95 0.94 0.93 

VGG-13 0.93 0.11 0.93 0.92 0.91 

FireNet 0.92 0.09 0.93 0.93 0.92 

InceptionV1-

OnFire 

0.96 0.10 0.94 0.93 0.93 

 

Table 2. Statistical results - size, accuracy and speed (fps). 

CNN training and evaluation was performed using fire 

im- age data compiled from Chenebert et al. [6] (75,683 

im- ages) and also the established visual fire detection 

evalua- tion dataset of Steffens et al. [8] (20593 images) 
in addition to material from public video sources 

(youtube.com: 269,426 images) to give a wide variety of 

environments, fires and non-fire examples (total dataset: 

365,702 images). From this dataset a training set of 

23,408 images was extracted for training and testing a 

full-frame binary fire detection problem (70:30 data split) 

with a secondary validation set of 2931 im- ages used for 

statistical evaluation. Training is from random 

initialisation using stochastic gradient descent with a 

momen- tum of 0.9, a learning rate of 0.001, a batch size 

of 64 and categorical cross-entropy loss. All networks are 

trained using a a Nvidia Titan X GPU via TensorFlow 

(1.1 + TFLearn 0.3). 
 From the results presented in Table 1, addressing the 

full-frame binary fire detection problem,  we can see that  

the InceptionV1-OnFire architecture matches the maximal 

performance of its larger parent network InceptionV1 

(0.93 accuracy / 0.96 TPR, within 1% on other metrics). 

Further- more, we can see a similar performance 

relationship between the FireNet architecture and its 

AlexNet parent. 

 Computational performance at run-time was performed 

using at average of 100 image frames of 608 360 RGB 

colour video on a Intel Core i5 2.7GHz CPU and 8GB of 

RAM. The resulting frames per second (fps) together with    
a measure of architecture complexity (parameter 

complexity, C), percentage accuracy (A) and ratio A : C 

are shown in Table 2. From the results presented in Table 

2,we observe significant run-time performance gains for 

the reduced com- plexity FireNet and InceptionV1-OnFire 

architectures com- pared to their parent architectures. 

Whilst FireNet provides a maximal 17 fps throughput, it 

is notable that InceptionV1- OnFire provides the maximal 

accuracy to complexity ratio. Whilst the accuracy of 

FireNet is only slightly worse than that of AlexNet, it can 

perform a classification 4.2 times faster. Similarly 
InceptionV1-OnFire matches the accuracy of InceptionV1 

but can perform a classification 3.3× faster. 

Table-II:Statistical results - size, accuracy and speed 

(fps). 

Detection (full-frame) TPR FPR F P A 

Chenebert et al. [17] 0.99 0.28 0.92 0.86 0.89 

InceptionV1-OnFire 0.92 0.17 0.90 0.88 0.89 

 

Table –III: Statistical results - localization). 

 
Localization (pixel region) TPR F P S 

Chenebert et al. [17] 0.98 0.90 0.83 0.80 

InceptionV1-OnFire 0.92 0.88 0.84 0.78 

 

To evaluate within the context of in-frame localization 

(Section 2.3), we utilise the ground truth annotation 

available from Steffens et al. [8] to label image 

superpixels for train- ing, test and validation. The 

InceptionV1-OnFire architec- ture is trained over a set of 
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54,856 fire (positive) and 167,400 non-fire (negative) 

superpixel examples extracted from 90% of the image 

frames within [23]. Training is performed as per before 

with validation against the remaining 10% of frames 

comprising 1178 fire (positive) and 881 non-fire 

(negative) examples. The resulting contour from any fire 

detected su- perpixels is converted to a bounding 

rectangle and tested for intersection with the ground truth 

annotation (Similarity, S: correct if union over ground 

truth>0.5 as per [23]). 

From the results presented in Table 3 (lower), we can see 
that the combined localization approach of superpixel 

region identification and localized InceptionV1-OnFire 

CNN classi- fication performs marginally worse than the 

competing state of the art Chenebert et al. [6] but 

matching overall full-frame detection (Table 3, upper). 

However, as can be seen from Ta- ble 2, this prior work 

[6] has significantly worse computa- tional throughput 

than any of the CNN approaches proposed here. Example 

detection and localization are shown in Fig- ures 1 and 4B 

(fire = green, no-fire = red). 

 

VI. CONCLUSIONS 
 

Overall we show that reduced complexity CNN, 

experimentally defined from leading architectures in the 

field, can achieve 0.93 accuracy for the binary 

classification task of fire detection. This significantly 

outperforms prior work in the field on non-temporal fire 
detection [6] at lower complexity than prior CNN based 

fire detection [22]. Furthermore, reduced complexity 

FireNet and InceptionV1-OnFire architectures offer 

classification accuracy within less than 1% of their more 

complex parent architectures at 3-4_ of the speed (FireNet 

offering 17 fps). To these ends, we illustrate more 

generally a architectural reduction strategy for the 

experimentally driven complexity reduction of leading 

multi-class CNN architectures towards efficient, yet 

robust performance on simpler binary classification 

problems. 
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