

© 2020 IJSRET
311

International Journal of Scientific Research & Engineering Trends
Volume 6, Issue 1, Jan-Feb-2020, ISSN (Online): 2395-566X

Web Application Vulnerability Exploitation using

Penetration Testing scripts
Shubham Rawat , Tushar Bhatia, Eklavaya Chopra

Under guidance of : Ms Akanksha Dhamija(Assistant Professor)
Bhagwan Parshuram Institute of Technology

Guru Gobind Singh Indraprastha University
Delhi, India

Abstract – Now a day many Webapps are being developed which on the one hand are beneficial but on the same part contains a

lot of vulnerabilities. Most of the work which remains untouched is web security. Online shopping and web services are

increasing at rapid rate. Cross Site Request forgery(CSRF) and Cross side scripting(XSS) are some of the top vulnerabilities.

Going through this paper, we will cover a lot of vulnerabilities that are present in webapps and will be presenting some real

world threats to the web apps. The vulnerabilities will be found out by the help of penetration testing. Various threat models

for the vulnerabilities are also mentioned to give a good understanding about them.

Keywords- Cross Site Scripting, Penetration testing, Cross Site Request Forgery.

I. INTRODUCTION

The World Wide Web has changed the life of people very

drastically.All individuals as well as large organizations

everyone are using Web. Web application like personal

websites, forums, e commerce application is spread all

over the world. Looking at the present Scenario Most of
the infrastructures like banks, stock market,

communication, defence all are using Web Application.

As the data which is managed by the site web application

increases and the web apps expand,so does the risk of

attack by malicious minds also increases. Several

WebApps are being developed lately and with the

growing amount of work the need of we applications are

also increasing. Most of the webapps are contains a

considerable amount of vulnerabilities. Some of the

common vulnerabilities are as follow:-

1. Cross-Site Request Forgery
Cross-Site Request Forgery (CSRF) is one type of an

attack over a Web application in which an adversary

causes a victim’s browser to perform an unwanted action

on a trusted website via a malicious link or other content.

It is an old type of application attack. It was discovered by

Norm Hardy in 1988, application level trust issue and

called it confused deputy [1].

It has appeared in the top 10 Web application threats.[2]

2. Cross-Site Scripting

Cross-site Scripting (XSS) in web applications emerged

as one of the most frequent types of security

vulnerabilities in The last years [3]. Unlike related
problems, such as SQL injection, XSS attacks do not

affect the server-side but clients: The actual exploitation

is within the victim’s web browser. Therefore, the

operator of a web application has only very limited

Evidence of successful XSS attacks.XSS related

problems are therefore often overlooked or recognized

rather late.

3. SQL Injection

SQL Injection vulnerability may affect to dynamic web

application which stored data in the associated database.

Through SQL Injection, attacker passes malicious code to

SQL Server through inserting it in the strings. This

malicious code is commonly known as payloads that

instruct the database server to retrieve specific

information from database.

Inspite being aware of all the vulnerabilities, web

application are still being deployed with the

vulnerabilities which make them an easy target to

attack.Developers still need to have more knowledge

about the vulnerabilities and attacks so that they can

handle it during the development phase itself.In this

paper, by the help of Penetration Testing we will be

finding out the some of the above mentioned

vulnerabilities and after finding those vulnerabilities

solution will be provided on how we can protect our Web

Apps from such type of web attacks.The Information that
will be covered through out the research paper will help

the developers and researchers to get knowledge about

security related scenarios so that they can make their sites

free from the vulnerabilities.

II. RELATED WORK

In a research work, there was some development in

finding XSS vulnerability. [3] They evaluated where the

attack will take place in the JS script and targeted their

focus on it. They analysed that on which section of code

is targeted by attacker and discussed how the attack

© 2020 IJSRET
312

International Journal of Scientific Research & Engineering Trends
Volume 6, Issue 1, Jan-Feb-2020, ISSN (Online): 2395-566X

would take place. Also, there is this research paper ,

which shows how XSS works in detail. They have made

few scripts that are capable to perform Generic as well as

Reflected XSS.They have discussed full mechanism on

how a string is accepted by system through automata and

have shown that how their exploit will help them retrieve

the information of the system.They are testing the web

app manually and are not using any tool. [5]

Another work shows that how cross site request forgery

(XSRF) works. In this , they have illustrated how the
XSRF attack works and have given some methodologies

on how to prevent it using a threat model . They have

shown various Data Flow Diagrams(DFD) to illustrate

how data flows through a web app and how they will

forge a hoax request , so that they get access to their data.

They have shown some common XSRF attacks and their

preventive measures.They also created malicious script

and exploits which depicted on how much vulnerable the

web app is to the XSRF attack. [4] This work shows

preventive measures on XSRF attack only.

There is also a research which shows how to prevent and

protect the web app from these attacks. It shows various

attacks and how they are used to exploit vulnerabilities

like XSS, XSRF, SQL Injection,etc. They have also

discussed about the Security

measures to prevent these attacks , like applying network

firewall, Intrusion Detection System (IDS), Intrusion

Prevention System (IPS),etc .[8] The goal of that research

paper was to illuminate the preventive measures for a web

app.

There is also this intriguing research , which shows how
an attacker thinks while attacking on a web app . They

have statistically supported their research on how much

damage these web exploits and payload can cause while

exploiting the common vulnerabilities. This research

helped in getting a gist about how an attacker may

proceed on finding basic vulnerabilities and how much

risk these vulnerabilities are to the system.[9]

This research paper is exhilarated by these researches and

how they proceed on a web app. Web apps are usually

vulnerable as the developer were unaware of the
vulnerabilities that are very common. This research is

distant from the rest as here the developers created the

web app keeping in mind on how much vulnerable can

their web app is. Web app are usually tested for

vulnerability assessment, but this research shows building

a web app from scratch and then exploiting it with

exploits and malicious scripts. The developers working on

this research scripted a web app and demonstrated the the

techniques to extract data from it.[2] This is a stand-alone

approach used to depict how much secure the data is on a

basic web app implemented on a website. Showing

vulnerability report after assessment will not solve the

purpose of Penetration testing, but making a schematic

model on how much it is easy for an attacker to deploy

few exploits to extract user credentials , will illuminate

the need of the hour,i.e., deploying preventive measures

against exploitation of common vulnerabilities.

1. Work Done:

In this research, we took a web app and tried to

demonstrate the common web application attacks, i.e. ,

cross site scripting, sql injection and cross site request

forgery. Firstly, we took three tools which are, Nikto,

Sqlmap and XSStrike. These three tools are used to access
these vulnerabilities and help in exploiting them. In this

research, these tools were altered and an exploit was

attached at the end so that after running the script , the

exploit can attack on the vulnerability after scanning them

2. Analysing the most Appropriate type of attack:-

Website today consist of numerous type of vulnerabilities.

Some of the vulnerabilities which are mostly being

popped out in webapps are Sql injections, Xss forgery and

cross site scripting. These vulnerabilities need to be

handled. If they are left unhandled then a lot of

consequences needs to be faced in the future.

3. Analysing process has been done on the listed

attacks:-

Sql injection is a code injection technique where

malicious queries of Sql are used to control a web

application database; It scans the database and try to do

SQL injection. If the database supports sql and the

encryption is weak , then it will notify that the attack is

successful and will display the login credentials.The script

will run common exploits like basic sql query for blind

sql, obfuscated queries and few more till we can confirm

that sql injection is possible. If the database doesnt exist ,

then it will simply not run and will give no result on the
console. Cross-site Scripting (XSS) in web applications

emerged. As one of the most frequent types of security

vulnerabilities in the last years [3]. Unlike related

problems, Such as SQL injection, XSS attacks do not

affect the server-side but clients: The actual exploitation

is within the victim’s web Browser. Therefore, the

operator of a web application has Only very limited

evidence of successful XSS attacks.

4. Cross-Site Request Forgery (CSRF) is one type of

an attack:- over a Web application in which an

adversary causes a victim’s browser to perform an
unwanted action on a trusted website via a malicious link

or other content. It is an old type of application attack. It

was discovered by Norm Hardy in 1988, application level

trust issue and called it confused deputy [1].It has

appeared in the top 10 Web application threats[2].

5. Scripts that are being used for Penetration

Testing:-

5.1 NIKTO

Nikto is a script which scans the website and finds the

vulnerabilities that are present in the website. If the web

server is hosting multiple sites using virtual hosts then all

hosted sites need to be scanned. It takes about 45 minutes

© 2020 IJSRET
313

International Journal of Scientific Research & Engineering Trends
Volume 6, Issue 1, Jan-Feb-2020, ISSN (Online): 2395-566X

for the script to run on the Website.As it is perl based

security tool it will execute on most of the platforms with

the necessary perl interpreter.It can be use to used to find

every type of obscure issues that are present in the

website.

5.2 Nikto Process

Firstly, in Nikto , the script scans the whole web app and

its database and finds all the vulnerabilities in them . Then

, after finding the php file or jwt tokens , the exploit

which is attached in the script will run and try to exploit

the xsrf(cross site request forgery) vulnerability. It will try
few combinations of exploit and then it will report if the

attack was successful or not. It will work simply by

getting the hostname and the perl command to run it. Ti

saves the retrieved data in TXT, CSV,etc. If the attack

was successful, it will notify and the user id and password

will be defined. Before performing any scan we need to

update the nikto database packages using the following

command

/usr/local/bin/nikto.pl –update.

Fig.1. Above command on system’s terminal.

To list the available Plugins for nikto we can use the

below command.

nikto.pl -list-plugins

Fig.2. Above command on system’s terminal.

To Scan for a website using hostname we can use the

option -h followed by niktop command.

nikto.pl -h www.google.com

Fig.3. Above command on system’s terminal.

Scan for a hostname using multiple ports we can use -p

option followed by nikto.pl.

nikto.pl -h www.google.com -p 80,443

Fig.4. Above command on system’s terminal.

While scanning for vulnerabilities we can see the process,
If we need to see the live process we need to use option

Display.

nikto.pl -D v -h www.google.com

Where,

-D = Display

v = Verbose

-h = hostname

Fig.5. Above command on system’s terminal.

While Tuning options used we can specify which test

need to made, Using x option we can exclude the tests

which we don’t need.

Below Options are available for specific scan’s.

© 2020 IJSRET
314

International Journal of Scientific Research & Engineering Trends
Volume 6, Issue 1, Jan-Feb-2020, ISSN (Online): 2395-566X

0 – File Upload

1 – Interesting File // we will get in logs 2 –

Misconfiguration / Default File

3 – Information Disclosure

4 – Injection (XSS/Script/HTML)

5 – Remote File Retrieval – Inside Web Root

6 – Denial of Service // Scan for DDOS 7 – Remote File

Retrieval – Server Wide

8 – Command Execution // Remote Shell

9 – SQL Injection // Scan for mysql vulnerabilities
A– Authentication Bypass b – Software Identification

c – Remote Source Inclusion x – Reverse Tuning Options

Now here it scans for SQL vulnerabilities for a website. A

single test will finish in short time if we Have not

specified for a single scan it will take the full scan and

take hours to complete.

nikto.pl -Tuning 9 -h www.isanalytics.com

Fig.6. Above command on system’s terminal.

Scan and save the result to a file using below command to

find the vulnerabilities:

nikto.pl -Display V -o nikto_scan_result.html

-Format html -h 192.168.0.166.

Fig.7. Above command on system’s terminal.

Fig.8. Result after the scan is complete.

Fig.10. Output of the vulnerabilities in

nikto_scan_result.html.

1. Sql Map

Sql injection is a code injection technique where

malicious queries of Sql are used to control a web

application database; Sqlmap scans the database and try to

do SQL injection. If the database supports sql and the

encryption is weak, then it will notify that the attack is

successful and will display the login credentials.The script

will run common exploits like basic sql query for blind
sql, obfuscated queries and few more till we can confirm

that sql injection is possible. If the database does not exist

, then it will simply not run and will give no result on the

console.

2. Sql Map Process

In SqlMap, the first thing which happens is that we enter

the web URl that we want to check along with the -u

parameter. -tor can be used to test the website with

proxies.

© 2020 IJSRET
315

International Journal of Scientific Research & Engineering Trends
Volume 6, Issue 1, Jan-Feb-2020, ISSN (Online): 2395-566X

Fig.11.Example of SQLi Errors from Different Databases

and Languages.

Now it test whether the database is being accessible or

not. If the site is filled with vulnerabilities. If the database

is accessible now, it can easily list the tables present in the

database as well as it can be use to list down the columns

of the tables. - dump command is used to retrieve the

data. To list down the vulnerable databases, Run the

following command :-

sqlmap -u
http://www.gbhackers.com/products_showit

em_clemco.php?item_id=28434 --dbs

Screenshot after running the commad is given below :-

Fig.12. Demonstration of how the terminal will display

output when above command will be executed.

The command that is used for listing the tables in the

database is as follow :-

sqlmap -u

http://www.gbhackers.com/cgi-bin/item.cgi?i tem_id=15 -

D

clem co industries --tables

It will list down the tables as follow :-

[10:56:25] [INFO] retrieved: item
[10:56:27] [INFO] retrieved: link

[10:56:30] [INFO] retrieved: other

[10:56:32] [INFO] retrieved: picture

[10:56:34] [INFO] retrieved: picture_tag

[10:56:37] [INFO] retrieved: popular_picture

[10:56:39] [INFO] retrieved: popular_tag

[10:56:42] [INFO] retrieved: user_info

Fig.13. Demonstration of how the terminal will display

output when above command will be executed.

Now list the columns of the table using the command :-

sqlmap -u

http://www.gbhackers.com/cgi-bin/item.cgi?i tem_id=15 -
D

gbhackers-T user_i nfo --columns

This returns 5 entries from target table user_info of

clemcoindustries database.

[10:57:16] [INFO] fetching columns for table

'user_info' in database 'gbhackers '

[10:57:18] [INFO] heuristics detected web

page charset 'ISO-8859-2'

[10:57:18] [INFO] the SQL query used
returns 5 entries

[10:57:20] [INFO] retrieved: user_id

[10:57:22] [INFO] retrieved: int(10) unsigned

[10:57:25] [INFO] retrieved: user_login

[10:57:27] [INFO] retrieved: varchar(45)

[10:57:32] [INFO] retrieved: user_password

[10:57:34] [INFO] retrieved: varchar(255)

[10:57:37] [INFO] retrieved: unique_id

[10:57:39] [INFO] retrieved: varchar(255)

[10:57:41] [INFO] retrieved: record_status

[10:57:43] [INFO] retrieved: tinyint(4)

Fig.14. Demonstration of how the terminal will display

output when above command is executed.

© 2020 IJSRET
316

International Journal of Scientific Research & Engineering Trends
Volume 6, Issue 1, Jan-Feb-2020, ISSN (Online): 2395-566X

Now the next step is to list the usernames from the

targeted table form targeted database, to do the same, the

command used is :-

sqlmap -u

http://www.gbhackers.com/cgi-bin/item.cgi?i tem_id=15 -

D

gbhackers-T user_info -C user_login –dump

Fig .15. Demonstration of how the terminal displays

output after the above command will be executed

Now the work for extracting password is required. It can

be through the following command:-

sqlmap -u

http://www.gbhackers.com/cgi-bin/item.cgi?i tem_id=15 -
D gbhackers-T

user_info -C user_password --dump

Fig .16. Demonstration of how the terminal will show

output after command will be executed.

The password extracted by this process is a hashed

password. This hashed password can be easily decrypted

by a hash Identifier hence giving us the password for an

extracted username.

3. XSSTRIKE

XSStrike is a python based Script with fuzzing which can

bypass the systems FireWall and can detect the Xss

vulnerabilities. The Scripting payloads are being stored in

the SQL Lite Database. GET as well as POST Http

request both are being supported by this tool. It fuzzeez

the parameters with payload . It is possible because of the

fuzzer module. It consist of an Striker module which is

used to provide brute force parameters. Crawler

functionality is also present with the script due to the

presence of the spider module.

4. XSStrike process
In Xsstrike, the script will check that the web app can be

exploited by XSS(cross site scripting) or not. It will

crawl through the code and will check that we can input

the command into it or not. It will try to look for the

website and would try to sneak in the script command

using javascript. If the script can be inserted , the it will

notify and we can manually insert the script using console

of the browser.

To start the process:-

Command to execute the XSS script is as followed :-

Python3 xsstrike.py

Fig.17. Above command in system’s terminal.

The next step is to find out the vulnerabilities in the

website using the XSS commands:- python3 xsstrike.py –

u <target web application>

Above command is used to find the vulnerabilities using

the XSScript To run XSStrike on a test web application,

the tool searches for both, DOM and reflected XSS
vulnerabilities, starting with DOM XSS.

python3 xsstrike.py –u

http://testphp.vulnweb.com/listproducts.php

?cat=1

Fig.18.Output on terminal after running the command.

© 2020 IJSRET
317

International Journal of Scientific Research & Engineering Trends
Volume 6, Issue 1, Jan-Feb-2020, ISSN (Online): 2395-566X

The above output shows the scripts were the scripts can

be altered and these DOM vulnerabilities can be extracted

on the console of the web browser. This script can be

altered on the website source code and the website gets

altered and everyone can see the modified script.

REFERENCE

[1]. R. A. Baeza-Yates and G. H. Gonnet. Fast text

searching for regular expressions or automaton

searching on tries. Journal of the ACM, 43(6):915 –

936, November 1996.

[2]. Blwood. Multiple xss vulnerabilities in tikiwiki 1.9.x.

mailing list Bugtraq, http://www.securityfocus.

com/archive/1/435127/30/120/threa ded, May 2006.

[3]. S. Christey and R. A. Martin. Vulnerability type

distribu-tions in cve, version 1.1. [online],

http://cwe.mitre. org/documents/vuln-trends/index.ht

ml, (09/11/07), May 2007.
[4]. K. Fernandez and D. Pagkalos. Xssed.com - xss (cross-

site scripting) information and vulnerabile websites

archive. [on-line], http://xssed.com (03/20/08).

[5]. D. Gusfield. Algorithms on Strings, Trees, and

Sequences: Computer Science and Computational

Biology. Cam-bridge University Press, New

York, USA, 1997. ISBN 0521585198.

[6]. W. G. Halfond, A. Orso, and P. Manolios. Using

positive tainting and syntax-aware evaluation to

counter sql injection attacks. In 14th ACM

Symposium on the Foundations of Soft-ware

Engineering (FSE), 2006.
[7]. O. Hallaraker and G. Vigna. Detecting malicious

javascript code in mozilla. In Proceedings of the

IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS), pages

85–94, June 2005.

[8]. R. Hansen. XSS (cross-site scripting) cheat sheet -

esp: for filter evasion. [online],

http://ha.ckers.org/xss. html, (05/05/07).

[9]. O. Ismail, M. Eto, Y. Kadobayashi, and S.

Yamaguchi. A proposal and implementation of

automatic detection/collec-tion system for cross-
site scripting vulnerability. In 8th In-ternational

Conference on

[10]. Advanced Information Network-ing and

Applications (AINA04), March 2004.

[11]. T. Jim, N. Swamy, and M. Hicks. Defeating script

injection attacks with browser-enforced embedded

policies. In 16th International World Wide Web

Conference (WWW2007), May 2007.

[12]. A. Klein. Cross site scripting explained. White

Paper, Sanc-tum Security Group,

http://crypto.stanford. edu/cs155/CSS.pdf, June

2002.
[13]. Klein. Dom based cross site scripting or xss of the

third kind. [online], http://www.webappsec.org/

projects/articles/071105.shtml, (05/05/07),

Sebtember 2005.

[14]. J. Kratzer. Jspwiki multiple vulnerabilitie. Posting

to the Bugtraq mailinglist, http://seclists.org/

bugtraq/2007/Sep/0324.html, September 2007.

[15]. C. Kruegel and G. Vigna. Anomaly detection of

web-based attacks. In Proceedings of the 10th

ACM Conference on Computer and

Communication Security (CCS ’03), pages 251–

261. ACM Press, October 2003.

[16]. G. Maone. Noscript firefox extension. Software,
http://www.noscript.net/whats, 2006.

[17]. Misc. New xss vectors/unusual javascript. [on-

line],http://sla.ckers.org/forum/read.php ? 2,15812

(04/01/08), 2007.

[18]. Nguyen-Tuong, S. Guarnieri, D. Greene, J.

Shirley, and D. Evans. Automatically hardening

web applications using precise tainting. In 20th

IFIP International Information Security

Conference, May 2005.

[19]. T. Pietraszek and C. V. Berghe. Defending against

injec-tion attacks through context-sensitive string
evaluation. In Recent Advances in Intrusion

Detection (RAID2005), 2005.

[20]. A. Pigrelax. Xss in nested tag in phpbb 2.0.16.

mailing list Bugtraq,

http://www.securityfocus.com/archi ve/1/404300,

July 2005.

[21]. D. Scott and R. Sharp. Abstracting application-level

web security. In WWW 2002, pages 396 – 407.

ACM Press New York, NY, USA, 2002.

[22]. P. Sowden. rbnarcissus. Software,

 http://code. google.com/p/rbnarcissus/ (04/01/08),

2008.
[23]. E. Ukkonen. On-line construction of suffix trees.

Algorith-mica, 14:249 – 260, 1995.

