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Abstract- In this project, we have made a racing game and also train an ML agent to play it, at the end of which it has learnt 

how to avoid collision with obstacles along the path and reach a goal destination. The resultant AI can then be used to 

implement intelligent transport systems, driverless cars and assign variable speed limits to the driver for efficient fuel usage. 

The ML agent was trained by using virtual sensors and raycasting methods using the Unity Engine which recently has 

acquired integration with Machine Learning. 
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             I. INTRODUCTION 
Video games, initially were thought as a means of 
entertainment but now have been used as platforms for 

education. Games like Doom are being used to train the 

military and there are various simulators available which 

help students in finessing their abilities in the areas of 

chemistry, surgery. Also, the video game industry has 

grown exponentially over the last few years with the 

introduction of eSports, mobile gaming and online 

streaming. This type of growth also demands frequent 

release of products from game developers. AI or 

Artificial Intelligence is one of the most complex 

elements in any video game.  

 
The reason being that hard coding its behavior to make it 

serve as a perfect character (an opponent or an ally or a 

basic NPC) in the video game. It takes a lot of time if a 

person decides to hardcode the behaviour as a lot of 

conditions are to be taking in care. This brings us to the 

concept of machine learning. Machine Learning is a type 

of learning where we can train agent(s) to behave and 

work as we want them to. So far, implementation of 

machine learning has been very small as it required 

setting up individual environments and the most popular 

game engines like Unreal Engine or Unity lacked an 
integration.  

 

This was until mid-2018, where Unity released a new 

package in the form of an environment known as Unity-

ML Agents. This environment allows developers to train 

various entities or agents to behave accordingly using 

reinforcement learning. The algorithm used is called PPO 

or Proximal-Policy- Optimization. This algorithm was 

released by OpenAI and makes use of a policy and with 

every iteration refines it to make it more efficient. 

Normal reinforcement learning requires a lot of fine-

tuning factors and variables which take a lot of time and 

sometimes break the training. PPO makes it easier to tune 

these variables. We use a typical racing game for our 

project. The player and the AI opponent have to reach a 

goal before the other whilst avoiding certain obstacles. 

This sort of AI can also be used to make Intelligent 
Transport Systems on which our Literature Survey is 

about. 

 

II. PURPOSE 
The purpose of this project is two-fold. 

1. Game Development 

Use of machine learning can shorten the development 
cycle of video games exponentially. The process will be 

much easier to implement as there will be no need to 

hardcode the behavior and everything else will come 

naturally. Major game development studies like Ubisoft 

are already working on implementing machine learning 

to video games. 

2.  Intelligent Transportation Systems 

Intelligent Transport Systems have been introduced in 

many countries and different continents and have resulted 

in fuel saving and efficiency, prevention of accidents and 

to avoid traffic jams and choke points. The AI at the end 
of third phase can be used as a base model for an 

advanced AI to create simulations and implement the 

system in real life. 

 

III. METHOD 
In this section we describe the general algorithm and 

methodology used. 

1. PPO Algorithm 

Natural policy gradient involves a second-order 

derivative matrix which makes it difficult to scale for 
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large scale problems. The computational complexity 

becomes too high for real world tasks. Intensive research 

is done to reduce the complexity by approximate the 

second-order method. Proximal Policy Optimization 

(PPO) uses a slightly different methodology. Instead of 

imposing a hard constraint, it formalizes the constraint as 

a penalty in the objective function. By not avoiding the 

constraint at all cost, we can use a first-order optimizer 

like the Gradient Descent method to optimize the 

objective. 

 

2. Optimization 

There are two optimization methods 

2.1 Line Search 

Line Search methods picks the steepest direction from the 

current location on the curve and moves forward towards 

it by a step size. If the step size is too small, it will take 

forever to reach the peak, and if the step size is too large, 

we can go down the cliff. Policy gradient is mainly an 

on-policy method. It searches actions from the current 

state. Hence, we resume the exploration from a bad state 

with a locally bad policy. This hurts performance badly. 
2.2 Trust Region 

Trust region is calculation of the maximum step size or 

the area in which we may want to perform the line search 

first. Also, the size of the trust region can be dynamically 

changed as per the requirements. 

 

 

IV. MACHINE LEARNING IN VIDEO 

GAME DEVELOPMENT 
Machine Learning can be used in video game 

development to ease the process and reduce the 

development cycle of the game so as to meet deadlines 

quickly and more efficiently. [11] Unity, a free game 

engine has recently integrated machine learning to its 
engine which allows anyone and everyone to train and 

implement an agent. This is the engine that we have used 

for our project. 

 

V. SETTING UP THE ENVIRONMENT 
We began setting up the environment. We downloaded 
the package provided, installed Anaconda Terminal and 

integrated TensorFlow with Unity. All this was done by 

referring the document provided in Unity ML’s GitHub 

repository. We then decided to test the environment by 

using basic examples like the game of Soccer, Tennis, etc 

 

VI. TRAINING BASIC MOVEMENT 
We then decided to start with our actual project and start 

training our agent for basic movement. Initially it was 

first decided to give it a positive reward for reaching the 

goal but realized the agent was not having a clear idea as 

to which direction the agent had to go, so to fix the issue 

we assigned it a positive reward for moving closer to the 

goal. 

                   Table 1 Initial Reward System 

 

                  

           VII. COLLISION AVOIDANCE 
We trained the agent to avoid a certain obstacle. We 

observed that if we assigned a negative reward for 

colliding with an obstacle, it was still getting a positive 

mean reward as it was still reaching the goal and not 

acknowledging individual actions. Hence, we called a 

reset function called Done() to end the current phase 

training so that it was getting a negative mean reward. 

 

 

Fig. 1 Multiple graphs showing Policy vs Curiosity 

Reward, Entropy, Learning Rate, Value Estimate of 

initial training. 

 

                Table 2. Improvised Reward System 

 

We can see that entropy and learning rate are decreasing 

and the mean value is increasing with successive policy 
which is feasible. We are not using a curiosity variable 

and hence that graph has no data. 

 

VIII. MAKING THE GAME 
Next, we began making the final game, adding menus, 

sounds, making models of different cars, etc. We also 

refined the reward system and created an actual level. We 
observed that as the complexity of the level increased 

with addition of more obstacles, the training took a long 

Action Reward 

Reached Goal 

Fall Off 

Move closer to goal 

+100.0 

-100.0 

+0.0003 

Action Reward 

Reached Goal 

Reached Border 

Reached Obstacle 

Fall Off 

Move closer to goal 

+500.0 

-0.5 

-5.0 

-100.0 

+0.0003 
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time to finish due to our limited computational power. 

We overcame this by using Nav Mesh surfaces to give 

aid in collision avoidance. 

                Table 3. Final Reward System 

 

 

 

 

 

 

 
 

 

 

 

 
 

Fig.2  Tensor Flow graphs of the final training showing 

Policy vs Entropy, Learning Rate, Value Estimate. 

 

IX. HOW IT WORKS 
The agent is controlled by a brain which has common 

parameters like the state space and action space. The 

agent has a Ray Perception component which emits a 

raycast of a distance and at angles defined by us. This 

helps it collect observations and differentiate as to what 

is a goal and an obstacle by tags and Detectable Objects 

assigned by us. The training is done using a config file 

which has parameters like max steps, batch size, etc. The 
movement is done by the Agent Action function which 

initially, tries to move in random directions and then see 

which is gaining a bigger reward. All the data, the 

progress, etc is shown in the Anaconda Terminal out of 

which a graph can be created. 

 

 
 

Fig 1. Player competing agaisnt training AI to avoid 

obstacles and finish first. 

 

X. LIMITATIONS 
Reinforcement Learning depends mostly on the 

environment, so change the environment and you have to 

re-do all the training. One way to overcome this, can be 

to implement path finding algorithms or have a heuristic 

brain to make the decisions. In our case, if we had to 
change an obstacle’s location then we’ll have to repeat 

the training process. This somewhat restricts us to only 

static environments which are fixed by us, the developers 

which is not a bad thing since the environments are 

created by us and are not randomly generated. 

 

XI. CONCLUSION 
The final game ’Speedsters’ was successfully made using 

Unity Engine. The AI was competing extremely well 

with the player and avoiding obstacles as expected. We 

even put different difficulty level based on the training it 

received and other attributes like acceleration, etc. We 

added menus, music and gave the game a visual appeal 

and polished the final build. However, the training is still 

static meaning it won’t work for dynamic environments. 

To counter this, one can either use a heuristic brain which 

decides on its own with the help of some hard coding or 

to implement other algorithms such as a path finding 
algorithm to aid the training and in turn, the AI. 

 

  REFERENCES 
1. C Perera, S. . D. (2017). “Applying intelligent speed 

adaptation to a road safety mobile application – Driver 

Safe Mode.” 10.1109/ICTER.2017.8257790. 

2.  C. Wang, J. L. and G. Teng, S. Chang, Y. Z. (2007). 
“Study on intelligent speed adaptation impact of 

driving safety based on simulation.” Second 

International Conference on Innovative Computing, 

Information and Control (ICICIC 2007). 

3. Carsten, O. and Tate, F. (2005). “Intelligent speed 

adaptation: accident savings and cost benefit analysis, 

accident analysis & prevention.” Volume 37, Issue 

3,2005,Pages 407-416,ISSN 0001-4575.  

4. EA. “Seed - https://www.ea.com/seed". 

5. Ebot and Booysen (2016). “Auditory intelligent speed 

adaptation for long-distance informal public transport 
in South Africa.” IEEE Intelligent Transportation 

Systems Mag- azine. 8. 10.1109/MITS.2016.2533979. 

6. Gamez Serna, C. and Ruichek., Y. (2017). “"Dynamic 

speed adaptation for path tracking based on curvature 

information and speed limits..” Sensors 17.6 (2017): 

1383. 

7. Lai, F. and Magnus Hjalmdahl, Kathryn Chorlton, M. 

W. (2010). “The long-term effect of intelligent speed 

adaptation on driver behavior.” Applied Ergonomics, 

Volume 41, Issue 2, 2010, Pages 179-186, ISSN 0003-

6870.  

8. Open AI (2017). “Ppo (proximal policy optimization) 
https://openai.com/blog/openai- baselines-ppo/. 

Action Reward 

Reached Goal 

Reached Border 

Reached Obstacle 

Avoiding Obstacle 

Fall Off 

Move closer to goal 

Move away from goal 

+500.0 

-0.5 

-5.0 

+0.1 

-100.0 

+0.0003 

-0.1 



 

 

© 2019 IJSRET 
   1094 
 
 

International Journal of Scientific Research & Engineering Trends                                                                                                         
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X 

 

 

9.  Qureshi & Abdullah, H. (2013). “A survey on 

intelligent transportation systems. middle-east 

journal of scientific research.” Middle-East Journal 

of Scientific Research. 15. 629-642. 10.5829. 

10. Stephan (2014). “The effectiveness of an advisory 

intelligent speed adaptation (isa) system for victorian 

repeat speeders.” Australasian Road Safety Research 

Policing Education Conference, 

11. Stephenson, J. (2018). “Ways machine learning will 

be used in game development.  

12. Sven Vlassenroot, S. B. (2007). “Driving with 
intelligent speed adaptation: Final results of the 

belgian isa trial, transportation research Part A: Policy 

and Practice.” Volume 41, Issue 3, 2007, Pages 267-

279, ISSN 0965-8564.  

13. Ubisoft. “Machine learning in Ubisoft.”  

14. Unity Technologies. “Unity ml - 

https://unity3d.com/machine-learning”. 

15. Zhao, Y. (2017). “Green drive: A smart phone-based 

intelligent speed adaptation system with real-time 

traffic signal prediction.” 2017 ACM/IEEE 8th 

International Conference on Cyber-Physical Systems 
(ICCPS).  

 


