

© 2019 IJSRET
 1091

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

Training an Agent to Play a Game using

Reinforcement Learning
Harsh Chhablani Mohit Karangiya

Dept. of Computer Science & Engg.

hchhablani96@gmail.com karthicknanmaran@gmail.com

SRM Institute of Science and Technology

Chennai, India

Abstract- In this project, we have made a racing game and also train an ML agent to play it, at the end of which it has learnt

how to avoid collision with obstacles along the path and reach a goal destination. The resultant AI can then be used to

implement intelligent transport systems, driverless cars and assign variable speed limits to the driver for efficient fuel usage.

The ML agent was trained by using virtual sensors and raycasting methods using the Unity Engine which recently has

acquired integration with Machine Learning.

Keywords – Machine Learning, Artifical Intelligence, Reinforcement Learning, Video Games, Unity

 I. INTRODUCTION
Video games, initially were thought as a means of
entertainment but now have been used as platforms for

education. Games like Doom are being used to train the

military and there are various simulators available which

help students in finessing their abilities in the areas of

chemistry, surgery. Also, the video game industry has

grown exponentially over the last few years with the

introduction of eSports, mobile gaming and online

streaming. This type of growth also demands frequent

release of products from game developers. AI or

Artificial Intelligence is one of the most complex

elements in any video game.

The reason being that hard coding its behavior to make it

serve as a perfect character (an opponent or an ally or a

basic NPC) in the video game. It takes a lot of time if a

person decides to hardcode the behaviour as a lot of

conditions are to be taking in care. This brings us to the

concept of machine learning. Machine Learning is a type

of learning where we can train agent(s) to behave and

work as we want them to. So far, implementation of

machine learning has been very small as it required

setting up individual environments and the most popular

game engines like Unreal Engine or Unity lacked an
integration.

This was until mid-2018, where Unity released a new

package in the form of an environment known as Unity-

ML Agents. This environment allows developers to train

various entities or agents to behave accordingly using

reinforcement learning. The algorithm used is called PPO

or Proximal-Policy- Optimization. This algorithm was

released by OpenAI and makes use of a policy and with

every iteration refines it to make it more efficient.

Normal reinforcement learning requires a lot of fine-

tuning factors and variables which take a lot of time and

sometimes break the training. PPO makes it easier to tune

these variables. We use a typical racing game for our

project. The player and the AI opponent have to reach a

goal before the other whilst avoiding certain obstacles.

This sort of AI can also be used to make Intelligent
Transport Systems on which our Literature Survey is

about.

II. PURPOSE
The purpose of this project is two-fold.

1. Game Development

Use of machine learning can shorten the development
cycle of video games exponentially. The process will be

much easier to implement as there will be no need to

hardcode the behavior and everything else will come

naturally. Major game development studies like Ubisoft

are already working on implementing machine learning

to video games.

2. Intelligent Transportation Systems

Intelligent Transport Systems have been introduced in

many countries and different continents and have resulted

in fuel saving and efficiency, prevention of accidents and

to avoid traffic jams and choke points. The AI at the end
of third phase can be used as a base model for an

advanced AI to create simulations and implement the

system in real life.

III. METHOD
In this section we describe the general algorithm and

methodology used.

1. PPO Algorithm

Natural policy gradient involves a second-order

derivative matrix which makes it difficult to scale for

© 2019 IJSRET
 1092

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

large scale problems. The computational complexity

becomes too high for real world tasks. Intensive research

is done to reduce the complexity by approximate the

second-order method. Proximal Policy Optimization

(PPO) uses a slightly different methodology. Instead of

imposing a hard constraint, it formalizes the constraint as

a penalty in the objective function. By not avoiding the

constraint at all cost, we can use a first-order optimizer

like the Gradient Descent method to optimize the

objective.

2. Optimization

There are two optimization methods

2.1 Line Search

Line Search methods picks the steepest direction from the

current location on the curve and moves forward towards

it by a step size. If the step size is too small, it will take

forever to reach the peak, and if the step size is too large,

we can go down the cliff. Policy gradient is mainly an

on-policy method. It searches actions from the current

state. Hence, we resume the exploration from a bad state

with a locally bad policy. This hurts performance badly.
2.2 Trust Region

Trust region is calculation of the maximum step size or

the area in which we may want to perform the line search

first. Also, the size of the trust region can be dynamically

changed as per the requirements.

IV. MACHINE LEARNING IN VIDEO

GAME DEVELOPMENT
Machine Learning can be used in video game

development to ease the process and reduce the

development cycle of the game so as to meet deadlines

quickly and more efficiently. [11] Unity, a free game

engine has recently integrated machine learning to its
engine which allows anyone and everyone to train and

implement an agent. This is the engine that we have used

for our project.

V. SETTING UP THE ENVIRONMENT
We began setting up the environment. We downloaded
the package provided, installed Anaconda Terminal and

integrated TensorFlow with Unity. All this was done by

referring the document provided in Unity ML’s GitHub

repository. We then decided to test the environment by

using basic examples like the game of Soccer, Tennis, etc

VI. TRAINING BASIC MOVEMENT
We then decided to start with our actual project and start

training our agent for basic movement. Initially it was

first decided to give it a positive reward for reaching the

goal but realized the agent was not having a clear idea as

to which direction the agent had to go, so to fix the issue

we assigned it a positive reward for moving closer to the

goal.

 Table 1 Initial Reward System

 VII. COLLISION AVOIDANCE
We trained the agent to avoid a certain obstacle. We

observed that if we assigned a negative reward for

colliding with an obstacle, it was still getting a positive

mean reward as it was still reaching the goal and not

acknowledging individual actions. Hence, we called a

reset function called Done() to end the current phase

training so that it was getting a negative mean reward.

Fig. 1 Multiple graphs showing Policy vs Curiosity

Reward, Entropy, Learning Rate, Value Estimate of

initial training.

 Table 2. Improvised Reward System

We can see that entropy and learning rate are decreasing

and the mean value is increasing with successive policy
which is feasible. We are not using a curiosity variable

and hence that graph has no data.

VIII. MAKING THE GAME
Next, we began making the final game, adding menus,

sounds, making models of different cars, etc. We also

refined the reward system and created an actual level. We
observed that as the complexity of the level increased

with addition of more obstacles, the training took a long

Action Reward

Reached Goal

Fall Off

Move closer to goal

+100.0

-100.0

+0.0003

Action Reward

Reached Goal

Reached Border

Reached Obstacle

Fall Off

Move closer to goal

+500.0

-0.5

-5.0

-100.0

+0.0003

© 2019 IJSRET
 1093

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

time to finish due to our limited computational power.

We overcame this by using Nav Mesh surfaces to give

aid in collision avoidance.

 Table 3. Final Reward System

Fig.2 Tensor Flow graphs of the final training showing

Policy vs Entropy, Learning Rate, Value Estimate.

IX. HOW IT WORKS
The agent is controlled by a brain which has common

parameters like the state space and action space. The

agent has a Ray Perception component which emits a

raycast of a distance and at angles defined by us. This

helps it collect observations and differentiate as to what

is a goal and an obstacle by tags and Detectable Objects

assigned by us. The training is done using a config file

which has parameters like max steps, batch size, etc. The
movement is done by the Agent Action function which

initially, tries to move in random directions and then see

which is gaining a bigger reward. All the data, the

progress, etc is shown in the Anaconda Terminal out of

which a graph can be created.

Fig 1. Player competing agaisnt training AI to avoid

obstacles and finish first.

X. LIMITATIONS
Reinforcement Learning depends mostly on the

environment, so change the environment and you have to

re-do all the training. One way to overcome this, can be

to implement path finding algorithms or have a heuristic

brain to make the decisions. In our case, if we had to
change an obstacle’s location then we’ll have to repeat

the training process. This somewhat restricts us to only

static environments which are fixed by us, the developers

which is not a bad thing since the environments are

created by us and are not randomly generated.

XI. CONCLUSION
The final game ’Speedsters’ was successfully made using

Unity Engine. The AI was competing extremely well

with the player and avoiding obstacles as expected. We

even put different difficulty level based on the training it

received and other attributes like acceleration, etc. We

added menus, music and gave the game a visual appeal

and polished the final build. However, the training is still

static meaning it won’t work for dynamic environments.

To counter this, one can either use a heuristic brain which

decides on its own with the help of some hard coding or

to implement other algorithms such as a path finding
algorithm to aid the training and in turn, the AI.

 REFERENCES
1. C Perera, S. . D. (2017). “Applying intelligent speed

adaptation to a road safety mobile application – Driver

Safe Mode.” 10.1109/ICTER.2017.8257790.

2. C. Wang, J. L. and G. Teng, S. Chang, Y. Z. (2007).
“Study on intelligent speed adaptation impact of

driving safety based on simulation.” Second

International Conference on Innovative Computing,

Information and Control (ICICIC 2007).

3. Carsten, O. and Tate, F. (2005). “Intelligent speed

adaptation: accident savings and cost benefit analysis,

accident analysis & prevention.” Volume 37, Issue

3,2005,Pages 407-416,ISSN 0001-4575.

4. EA. “Seed - https://www.ea.com/seed".

5. Ebot and Booysen (2016). “Auditory intelligent speed

adaptation for long-distance informal public transport
in South Africa.” IEEE Intelligent Transportation

Systems Mag- azine. 8. 10.1109/MITS.2016.2533979.

6. Gamez Serna, C. and Ruichek., Y. (2017). “"Dynamic

speed adaptation for path tracking based on curvature

information and speed limits..” Sensors 17.6 (2017):

1383.

7. Lai, F. and Magnus Hjalmdahl, Kathryn Chorlton, M.

W. (2010). “The long-term effect of intelligent speed

adaptation on driver behavior.” Applied Ergonomics,

Volume 41, Issue 2, 2010, Pages 179-186, ISSN 0003-

6870.

8. Open AI (2017). “Ppo (proximal policy optimization)
https://openai.com/blog/openai- baselines-ppo/.

Action Reward

Reached Goal

Reached Border

Reached Obstacle

Avoiding Obstacle

Fall Off

Move closer to goal

Move away from goal

+500.0

-0.5

-5.0

+0.1

-100.0

+0.0003

-0.1

© 2019 IJSRET
 1094

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

9. Qureshi & Abdullah, H. (2013). “A survey on

intelligent transportation systems. middle-east

journal of scientific research.” Middle-East Journal

of Scientific Research. 15. 629-642. 10.5829.

10. Stephan (2014). “The effectiveness of an advisory

intelligent speed adaptation (isa) system for victorian

repeat speeders.” Australasian Road Safety Research

Policing Education Conference,

11. Stephenson, J. (2018). “Ways machine learning will

be used in game development.

12. Sven Vlassenroot, S. B. (2007). “Driving with
intelligent speed adaptation: Final results of the

belgian isa trial, transportation research Part A: Policy

and Practice.” Volume 41, Issue 3, 2007, Pages 267-

279, ISSN 0965-8564.

13. Ubisoft. “Machine learning in Ubisoft.”

14. Unity Technologies. “Unity ml -

https://unity3d.com/machine-learning”.

15. Zhao, Y. (2017). “Green drive: A smart phone-based

intelligent speed adaptation system with real-time

traffic signal prediction.” 2017 ACM/IEEE 8th

International Conference on Cyber-Physical Systems
(ICCPS).

