

© 2019 IJSRET
 938

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

Efficient Artificial Neural Network Based Approach for

Software Fault Identification
Karandeep Kaur

Dept. of Computer Science Engg.
Ramgarhia Institute of Engineering & Technology

 Punjab, Phagwara, India

Abstract- Software Fault prediction is designed to predict error prone software modules by using some of the underlying

attributes of a software project. It is usually performed training a prediction model using project attributes added to the

failure information of a known item and then using the prediction model to predict the failure of the unknown item. In this

work, a adaptive-neuro-fuzzy system based algorithm was created to effectively address this issue and assess the execution of

neural utilizing software fault dataset at different parameter settings utilizing different execution estimation methods. The

examination used data assembled from the software fault database of programming bug data. The results show that the

Adaptive Neural Networks strategies regards to anticipating programming weakness tendency can be used to identify bugs

effectively.

Keywords- Software Engineering, Fault prediction, Fuzzy Reasoning, ANFIS (adaptive neuro fuzzy inference system).

 I. INTRODUCTION
In the present day it is observed that in many software

organizations emphasis is laid on reducing the

development cost [1],effort [2], time consumed for

development, and produce-reliable software [3] by

increasing the software quality. Due to the presence of

large line of code constituting to a huge number of

modules in a program, has lead to increase in complexity.

This lead to the difficulty in producing reliable software

without faults. The other obvious reason for failing to
produce reliable software is due to the lack of proper

testing activities and time [4].

This sort of problem can be better handled by predicting

certain quality attributes such as fault proneness,

maintenance effort, and the testing effort during the early

stages of software design. To achieve these objectives,

sufficient testing of the software product needs to be

carried out. Also exhaustive testing is not possible

because it leads to more testing cost to be incurred, and

can be very time consuming due to the large size of the
product. Thus, it is very much essential to recognize the

classes which are often quite fault prone [5]. There are

many approaches to identify such as fault prone classes

and software metrics are one such indicator.

The fault prone models predicted using these software

metrics can be used in early stages of SDLC. This will

benefit the developers to emphasize on reducing the

utilization of testing resources on the predicted faulty

classes only. Hence, this will significantly benefit in

saving time and resources during the development of a

software. Choosing proper metrics [6] is basic for

execution change of machine learning models. For

instance, line of code (LOC) of a module is a code

highlight. Static deformity investigation is another way to
deal with discovers surrenders in the code to guarantee

programming quality. Programming deformity

expectation has still been one of the most smoking themes

in the product designing zone. On one hand programming

imperfection expectation strategies comes in two flavors:

static and dynamic, contingent upon whether code

execution is required. Static imperfection forecast

principally uses code highlights to foresee deserts.

Dynamic imperfection forecast predicts abandons in view

of the dissemination of deformities in various

programming life-cycle stages. Then again, programming
imperfection forecast has two research objectives:

deformity thickness expectation and imperfection inclined

module expectation.

II. RELATED WORKS
Nowadays, with the overwhelming of Objected Oriented

(OO) programming [8], certain essential plot thoughts, for
instance, heritage, coupling, and association have been

battled to on a very basic level impact versatile quality.

Those diagram features have been entangled in reducing

the understandability of challenge arranged tasks, thusly

raising diverse quality. Machine learning systems are

science and architects, keen machines, particularly savvy

PC programs. These strategies have the capacity of PC,

programming and firmware to do those things that we, as

people, perceive as clever conduct. Strategies in view of

Machine Learning [9] have ended up being perfect for

expectation models as saw in writing.

© 2019 IJSRET
 939

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

ML procedures cover extensive variety of points, for

example, neural systems, Transformative Algorithm [10],

Swarm knowledge, bacterial scavenging Algorithm [11]

Fuzzy frameworks [12], and Artificial Immune

frameworks (AIF) [13]. The main ideas behind this work

into improve the execution of programming blemish need

models. Our technique is using Neural Systems with Back

propagation neural structure with Levenber-marquardt

Algorithm [15] minimizing mean error using static

features of software bug metric data set. The Machine-

learning procedures are utilized to discover the defect,
blame, powerlessness, and horrible stench to achieve

quality, sensibility, and reusability in programming.

Programming issue gauge strategies are utilized to predict

programming issues by utilizing quantifiable systems.

Regardless, Machine-learning frameworks are in like way

immense in perceiving programming insufficiency, [16]

demonstrated a study of programming imperfection check

utilizing machine-learning frameworks to predict the

event of deficiencies also demonstrated the standard

methods. It goes for delineating the issue of blame
propensity.

III. METHODOLOGY
For implementation we have used the PROMISE [17]

dataset made publicly for repeatable and verifiable

predictive models in software engineering especially

software fault identification. There are various metrics are

available of which we have used CM1 and JM1 for fault

identification. The CM1 is a NASA spacecraft

instrumentation project written in "C language". figure

below gives the import module used in MATLAB of

CM1 project.

Figure 1 importing CM1 software metrics in MATLAB

[18] for analysis.

Also a subset of complete table is shown below which

contains various fault metrics such as Line of code

(LOC), v(g) being the McCabe cyclomatic complexity,

etc with last column as identified defects [19]. The goal of

this project is to establish the relationship between

Object-Oriented metrics and fault proneness at the class

level. In this study, a fault is used as a dependent variable

and each of the CK metric is an independent variable. Its

intended to develop a function between fault of a class

and CK metrics suite (WMC, NOC, DIT, RFC, CBO,

LCOM) [20][21]. Fault is a function of WMC, NOC,
DIT,RFC, CBO and LCOM and can be represented as

shown in the following equation

Figure 2 Fuzzy Logic Designer for Software fault

detection

Figure 3 Neural Network Pattern Recognition Using Feed

Forward Levenberg Marquardt Algorithms showing 10

hidden layers and 1 output layers.

The Proposed SVM is compared using various
comparison metrics such as Mean squared error,

Accuracy and execution time is evaluated in this section.

© 2019 IJSRET
 940

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

Figure 4 MSE of SVM compared with ANFIS showing

that ANFIS has lower error <2% as compared to the SVM

which has about 12%.

Figure 5 Accuracy of ANFIS compared with SVM

Accuracy is defined as Accuracy = 100 −MSE.

As shown in figure on average ANFIS is 12.42% better
than SVM in case of MSE and about 21.62% better than

SVM in case of execution time on average as shown in

figure below.

Figure 6 Execution time of SVM compared with ANFIS

lower values indicate faster algorithm.

Also when we consider mean execution time SVM on

average took 6.60s and Mean Execution time of ANFIS

was 5.17s On average ANFIS is 21.62% better than SVM.

 IV. CONCLUSION
This work was about using Neural Network strategies for

software fault identification. The results show that the

Neural Network strategies with regards to can be used to

identify bugs effectively. Ensuing to having engaging

outcomes, we are sure that a customized by

programming issue acknowledgment and course of

action structure can be delivered to help the specialists

by giving second ends and disturbing them to cases that
require advance thought. In future, one can use other

training algorithms to increase the accuracy level for

predicting the software defects. Increase the use of

models which are based on machine learning techniques.

Machine learning models have better features than other

approaches. Using class level metrics, conduct more

studies on fault prediction models. Increase the usage of

public datasets for software fault prediction problem. As

discussed the ANFIS is provides 12.42% better accuracy

than SVM in case of MSE and about 21.62% better than

SVM in case of execution time on average. For the
future work we would like to extend our work in to

following domains Devising an efficient method for

predicting exact number of faults also Devising

techniques that can help identify faults during testing.

REFERENCES
1. Huang, Jianglin, Yan-Fu Li, and Min Xie. "An

empirical analysis of data preprocessing for machine

learning-based software cost estimation." Information

and software Technology 67 (2015): 108-127.

2. Jorgensen, M. (2014). What we do and don't know

about software development effort estimation. IEEE

software, 31(2), 37-40.

3. Garcia-Valls, M., Bellavista, P., & Gokhale, A. (2017).
Reliable software technologies and communication

middleware: A perspective and evolution directions for

cyber-physical systems, mobility, and cloud computing.

4. Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J.

(2017). Agile software development methods: Review

and analysis. arXiv preprint arXiv:1709.08439.

5. Weyuker, E., & Ostrand, T. (2016). Identifying fault-

prone files in large industrial software systems. In

Perspectives on Data Science for Software Engineering

(pp. 103-106).

6. Fenton, N., & Bieman, J. (2014). Software metrics: a
rigorous and practical approach. CRC press.

7. Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015).

Software defect prediction using ensemble learning on

selected features. Information and Software

Technology, 58, 388-402.

© 2019 IJSRET
 941

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

8. Kochar, B., Gaur, S. S., & Bhardwaj, D. K. (2017).

Identification, Analysis & Empirical Validation

(IAV) of Object Oriented Design (OO) Metrics as

Quality Indicators. International Journal on Recent

and Innovation Trends in Computing and

Communication, 5(8), 31-40.

9. Robert, C. (2014). Machine learning, a probabilistic

perspective.

10. Jeyaraj, A. (2018). Transformative learning in

designing algorithms for reporting information

systems. Education and Information Technologies, 1-
19.

11. Liu, J., Song, B., & Li, Y. (2018, May). An optimum

dispatching for photovoltaic-thermal mutual-

complementing power plant based on the improved

particle swarm knowledge algorithm. In 2018 13th

IEEE Conference on Industrial Electronics and

Applications (ICIEA) (pp. 1062-1067). IEEE.

12. Wang, H., Jing, X., & Niu, B. (2017). A discrete

bacterial algorithm for feature selection in

classification of microarray gene expression cancer

data. Knowledge-Based Systems, 126, 8-19.
13. Marín, N., Ruiz, M. D., & Sánchez, D. (2016). Fuzzy

frameworks for mining data associations: fuzzy

association rules and beyond. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery,

6(2), 50-69.

14. Saurabh, P., & Verma, B. (2016). An efficient

proactive artificial immune system based anomaly

detection and prevention system. Expert Systems

with Applications, 60, 311-320.

15. Ranganathan, A. (2015). The levenberg-marquardt

algorithm (2004).

16. Kalsoom, A., Maqsood, M., Ghazanfar, M. A., Aadil,
F., & Rho, S. (2018). A dimensionality reduction-

based efficient software fault prediction using Fisher

linear discriminant analysis (FLDA). The Journal of

Supercomputing, 74(9), 4568-4602.

17. Catal, C. (2011). Software fault prediction: A

literature review and current trends. Expert systems

with applications, 38(4), 4626-4636.

18. Chapman, S. J. (2015). MATLAB programming for

engineers. Nelson Education.

19. Card, D., Tan, C., & Smith, N. A. (2017). A Neural

Framework for Generalized Topic Models. arXiv
preprint arXiv:1705.09296.

20. Vashisht, V., Lal, M., Suresh chandar, G. S., &

Kamya, S. (2015). A framework for software defect

prediction using neural networks. Journal of Software

Engineering and Applications, 8(8), 384.

21. Gayathri, M., & Sudha, A. (2014). Software defect

prediction system using multilayer perceptron neural

network with data mining. International Journal of

Recent Technology and Engineering, 3(2), 54-59.

