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Abstract- Software Fault prediction is designed to predict error prone software modules by using some of the underlying 

attributes of a software project. It is usually performed training a prediction model using project attributes added to the 

failure information of a known item and then using the prediction model to predict the failure of the unknown item. In this 

work, a adaptive-neuro-fuzzy system based algorithm was created to effectively address this issue and assess the execution of 

neural utilizing software fault dataset at different parameter settings utilizing different execution estimation methods. The 

examination used data assembled from the software fault database of programming bug data. The results show that the 

Adaptive Neural Networks strategies regards to anticipating programming weakness tendency can be used to identify bugs 

effectively. 
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               I. INTRODUCTION 
In the present day it is observed that in many software 

organizations emphasis is laid on reducing the 

development cost [1],effort [2], time consumed for 

development, and produce-reliable software [3] by 

increasing the software quality. Due to the presence of 

large line of code constituting to a huge number of 

modules in a program, has lead to increase in complexity. 

This lead to the difficulty in producing reliable software 

without faults. The other obvious reason for failing to 
produce reliable software is due to the lack of proper 

testing activities and time [4].  

 

This sort of problem can be better handled by predicting 

certain quality attributes such as fault proneness, 

maintenance effort, and the testing effort during the early 

stages of software design. To achieve these objectives, 

sufficient testing of the software product needs to be 

carried out. Also exhaustive testing is not possible 

because it leads to more testing cost to be incurred, and 

can be very time consuming due to the large size of the 
product. Thus, it is very much essential to recognize the 

classes which are often quite fault prone [5]. There are 

many approaches to identify such as fault prone classes 

and software metrics are one such indicator.  

 

The fault prone models predicted using these software 

metrics can be used in early stages of SDLC. This will 

benefit the developers to emphasize on reducing the 

utilization of testing resources on the predicted faulty 

classes only. Hence, this will significantly benefit in 

saving time and resources during the development of a 

software. Choosing proper metrics [6] is basic for 

execution change of machine learning models. For 

instance, line of code (LOC) of a module is a code 

highlight. Static deformity investigation is another way to 
deal with discovers surrenders in the code to guarantee 

programming quality. Programming deformity 

expectation has still been one of the most smoking themes 

in the product designing zone. On one hand programming 

imperfection expectation strategies comes in two flavors: 

static and dynamic, contingent upon whether code 

execution is required. Static imperfection forecast 

principally uses code highlights to foresee deserts. 

Dynamic imperfection forecast predicts abandons in view 

of the dissemination of deformities in various 

programming life-cycle stages. Then again, programming 
imperfection forecast has two research objectives: 

deformity thickness expectation and imperfection inclined 

module expectation.  

 

II. RELATED WORKS 
Nowadays, with the overwhelming of Objected Oriented 

(OO) programming [8], certain essential plot thoughts, for 
instance, heritage, coupling, and association have been 

battled to on a very basic level impact versatile quality. 

Those diagram features have been entangled in reducing 

the understandability of challenge arranged tasks, thusly 

raising diverse quality. Machine learning systems are 

science and architects, keen machines, particularly savvy 

PC programs. These strategies have the capacity of PC, 

programming and firmware to do those things that we, as 

people, perceive as clever conduct. Strategies in view of 

Machine Learning [9] have ended up being perfect for 

expectation models as saw in writing.  
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ML procedures cover extensive variety of points, for 

example, neural systems, Transformative Algorithm [10], 

Swarm knowledge, bacterial scavenging Algorithm [11] 

Fuzzy frameworks [12], and Artificial Immune 

frameworks (AIF) [13]. The main ideas behind this work 

into improve the execution of programming blemish need 

models. Our technique is using Neural Systems with Back 

propagation neural structure with Levenber-marquardt 

Algorithm [15] minimizing mean error using static 

features of software bug metric data set. The Machine-

learning procedures are utilized to discover the defect, 
blame, powerlessness, and horrible stench to achieve 

quality, sensibility, and reusability in programming. 

Programming issue gauge strategies are utilized to predict 

programming issues by utilizing quantifiable systems.  

 

Regardless, Machine-learning frameworks are in like way 

immense in perceiving programming insufficiency, [16] 

demonstrated a study of programming imperfection check 

utilizing machine-learning frameworks to predict the 

event of deficiencies also demonstrated the standard 

methods. It goes for delineating the issue of blame 
propensity.  

 

III. METHODOLOGY 
For implementation we have used the PROMISE [17] 

dataset made publicly for repeatable and verifiable 

predictive models in software engineering especially 

software fault identification. There are various metrics are 

available of which we have used CM1 and JM1 for fault 

identification. The CM1 is a NASA spacecraft 

instrumentation project written in "C language". figure 

below gives the import module used in MATLAB of 

CM1 project. 

 

 
 

Figure 1 importing CM1 software metrics in MATLAB 

[18] for analysis. 

 

Also a subset of complete table is shown below which 

contains various fault metrics such as Line of code 

(LOC), v(g)  being the McCabe cyclomatic complexity, 

etc with last column as identified defects [19]. The goal of 

this project is to establish the relationship between 

Object-Oriented metrics and fault proneness at the class 

level. In this study, a fault is used as a dependent variable 

and each of the CK metric is an independent variable. Its 

intended to develop a function between fault of a class 

and CK metrics suite (WMC, NOC, DIT, RFC, CBO, 

LCOM) [20][21]. Fault is a function of WMC, NOC, 
DIT,RFC, CBO and LCOM and can be represented as 

shown in the following equation 

 

 
 

Figure 2 Fuzzy Logic Designer for Software fault 

detection 

 
 

Figure 3 Neural Network Pattern Recognition Using Feed 

Forward Levenberg Marquardt Algorithms showing 10 

hidden layers and 1 output layers. 

 

The Proposed SVM is compared using various 
comparison metrics such as Mean squared error, 

Accuracy and execution time is evaluated in this section. 
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Figure 4 MSE of SVM compared with ANFIS showing 

that ANFIS has lower error <2% as compared to the SVM 

which has about 12%. 

 

 
 

Figure 5 Accuracy of ANFIS compared with SVM 

Accuracy is defined as Accuracy = 100 −MSE. 
 

As shown in figure on average ANFIS is  12.42% better 
than SVM in case of MSE and about  21.62% better than 

SVM in case of execution time on average as shown in 

figure below. 

 

 
 

Figure 6 Execution time of SVM compared with ANFIS 

lower values indicate faster algorithm. 

 

Also when we consider mean execution time SVM on 

average took 6.60s and Mean Execution time of ANFIS 

was 5.17s On average ANFIS is 21.62% better than SVM. 

                 

                       IV. CONCLUSION 
This work was about using Neural Network strategies for 

software fault identification. The results show that the 

Neural Network strategies with regards to can be used to  

identify bugs effectively. Ensuing to having engaging 

outcomes, we are sure that a customized by 

programming issue acknowledgment and course of 

action structure can be delivered to help the specialists 

by giving second ends and disturbing them to cases that 
require advance thought. In future, one can use other 

training algorithms to increase the accuracy level for 

predicting the software defects. Increase the use of 

models which are based on machine learning techniques. 

Machine learning models have better features than other 

approaches. Using class level metrics, conduct more 

studies on fault prediction models. Increase the usage of 

public datasets for software fault prediction problem. As 

discussed the ANFIS is provides 12.42% better accuracy 

than SVM in case of MSE and about 21.62% better than 

SVM in case of execution time on average. For the 
future work we would like to extend our work in to 

following domains Devising an efficient method for 

predicting exact number of faults also Devising 

techniques that can help identify faults during testing.  
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