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Abstract- The properties of new class of functions, namely fine totally continuous function, fine semi totally continuous function 

and fine totally semi continuous functions in fine topological space are analyzed in this paper. The relation of these functions 

with already existing well known functions are studied. 
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                I. INTRODUCTION 

Powar P. L. and Rajak K.11 have investigated a special 

case of generalized topological space called fine 

topological space .Functions and of course open functions 

stand among the most important notions in the whole of 
mathematical science. Many different forms of open 

function have been introduced over the years. Various 

interesting problems arise when one considers openness. 

Its importance is significant in various areas of 

mathematics and related sciences. 

 

                    II. PRELIMINARIES 
We recall the following definitions which are useful in the 

sequel. 

Definition 1 [10, 11] 

Let (X, τ ) be a topological space we define τ(Aα) = 

τα={Gα(≠X):Gα∩Aα ≠ υ,for Aα∈τ and Aα ≠X, υ for 

some      α ∈ J , where J is the index set}. Now, define τf 

= {υ, X, ∪τα}. The above collection τf of subsets of X is 

called the fine collection of subsets of X and (X, τ, τf ) is 

said to be the fine topological space X and generated by 
the topology τ on X. The element of τf are called fine 

open sets in (X, τ, τf ) and the complement of fine open 

set is called fine closed sets and it is denoted by τfc. 

Example1  [10, 11] 

Consider a topological space X = {1, 2, 3} with the 

topology τ ={X, υ, {1}} ={X, ϕ, Aα} where Aα = {1}.    

In view of Definition 2.1 we have, τα =τ (Aα) = τ {1} = 

{{1}, {1, 2}, {1, 3}}. Then the fine collection is                 

τf = {ϕ, X, ∪τα} = {ϕ, X, {1}, {1, 2}, {1, 3}}. 

We quote some important properties of fine topological 
spaces. 

Lemma: 2.3. [10, 11] 

Let (X, τ, τf ) be a fine space then arbitrary union of fine 

open set in X is fine-open in X. 

Lemma: 2.4. [10, 11] 

The intersection of two fine-open sets need not be a fine-

open set as the following example shows. 

Example 2 [10,11] 

Let X = {1, 2, 3} be a topological space with the topology 

τ = {X, ϕ, {1},{2}}, {1, 2}}, τ f = {X, ϕ, {1}, {2}, {1, 2}, 

{2, 3}, {1, 3}}. It is easy to see that, the above collection 

τf is not a topology. Since, {1, 3} ∩ {2, 3} = {3} = τf . 

Hence, the collection of fine open sets in a fine space X 
does not form a topology on X, but it is a generalized 

topology on X. 

Remark :2.6 [10,11] 

In view of Definition 2.1 of generalized topological space 

and above Lemmas 2.3 and 2.4 it is apparent that (X, τ, τf 

) is a special case of generalized topological space. It may 

be noted specifically that the topological space plays a 

key role while defining the fine space as it is based on the 

topology of X but there is no topology in the back of 

generalized topological space. 

Definition2  [10,11] 
A subset A of a Fine space (X, τ, τf )  is called Fine semi-

open if A ⊆ Fcl(Fint(A)). The complement of Fine semi-

open set is called Fine semi-closed.  The Fine semi-

closure of a subset A of Fine space X, denoted by 

Fscl(A), is defined to be the intersection of all Fine semi-

closed sets containing A in Fine space X. 

 

III. FINE TOTALLY CONTINUOUS 

FUNCTIONS AND THEIR SUBSTRATAL 

QUALITY 
Definition 1  

A function f : (X, τ, τf) → (Y, σ, σf) is said to be Fine 

Totally Continuous Function if  inverse image of every 

fine open set in Y is fine clopen in X. 

Example 1 

Consider the fin space (X, τ, τf) &  (Y, σ, σf) where 

X=Y=[1, 2, 3} with topology τ ={X, υ, {1}} and σ = {Y, 

ϕ, {1},{3}}.  Then τf = { X, υ , {1}, {1, 2}, {1, 3}} and 

σf = {Y, ϕ, {1}, {3}, {1, 2}, {2, 3}, {1, 3}}.   
Also σfc = { Y, υ, {2, 3}, {1, 2}, {3}, {2, 3},{1, 3},{1, 

2}}. FCO(Y) = { Y, υ, {1}, {3}, {1, 2}, {2, 3}, {1, 3}}. 

Define f : (Y, σ, σf) → (X, τ, τf)  by  f (1) = 1; f(2) = 2; 

f(3) = 3 
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Thus inverse image of every fine open set in x is fine 

clopen in Y. 

Hence, f is fine totally continuous function. 

Theorem1  

A function f: (X, τ, τf) → (Y, σ, σf) is fine totally 

continuous function  iff  inverse image of every fine 

closed subset of Y is fine clopen in X. 

Proof 

Suppose f: (X, τ, τf) → (Y, σ, σf) is fine totally 

continuous function. 

Let F be fine closed in Y. 
Then FC is fine open in Y. 

Since f is fine totally continuous, f-1 (FC) is fine clopen 

in X. 

⇒ f-1 (F) is fine clopen in X. 

Conversely,  

Suppose inverse image of every fine closed subset of  Y is 

fine clopen in X. 

Let G be fine open in .Y 

Then GC is fine closed in Y. 

By hypothesis, f-1 (GC) = (f-1(G))C is fine clopen in X. 

i.e.) f-1 (G) is fine clopen in X. 
Hence, f is fine totally continuous function. 

Theorem 2 

The composition of two fine totally continuous functions 

is fine totally continuous:. 

Proof 

Let f: (X, τ, τf) → (Y, σ, σf) and g: (Y, σ, σf) → (Z, µ, µf) 

be any two fine totally continuous functions. 

Let V be fine open in Z.  

Since g is fine totally continuous, g-1(V) is fine clopen in 

Y. 

⇒ g--1(V) is fine open in Y. 
Since f is fine totally continuous, f-1g-1(V) is fine clopen 

in X.i.e.) (g∘f)-1 is fine clopen in X.  

Hence g∘f is fine totally continuous. 

 

IV. FINE SEMI TOTALLY CONTINUOUS 

FUNCTION AND THEIR 

SUBSTRATAL QUALITY 
 Definition 1 

A function f: (X, τ, τf) → (Y, σ, σf)   is said to be fine 

semi totally continuous if  inverse image every fine semi 

open subset of Y is fine  clopen in X. 

Theorem1 

Every fine semi totally continuous function is fine totally 

continuous function. 

Proof 

Suppose f: (X, τ, τf) → (Y, σ, σf) is a fine  semi totally 

continuous function. 

Let A be any fine open set in Y. 
Since every fine open set is fine semi open set, A is fine  

semi open in Y. Since f is fine semi totally continuous, f-

1(A) is fine clopen in X. Thus f is fine totally continuous 

function. 

Theorem 2 

Let f:  (X, τ, τf) → (Y, σ, σf) is fine semi totally 

continuous and g : (Y, σ, σf) → (Z, µ, µf) is fine semi 

continuous.  Then g∘f is fine totally continuous. 

Proof 

Let G be fine open in Z. 

Since g is fine semi continuous, g-1 (G) is fine semi open 

in Y. 

Also f is fine semi totally continuous, f-1g-1 (G) is fine 

clopen in X. 

i.e.) (g∘f)-1 is fine clopen in X. 

Therefore, g∘f is fine totally continuous.  

Definition 2 

If f :  (X, τ, τf) → (Y, σ, σf)  and A0 is a subset of  (X, τ, 

τf).  We define the fine restriction of f to A0 be the 

function mapping A0 into (Y, σ, σf)   whose rule is {(a, f 

(a)) / a ∈A0}.  It is denoted by f|A0 which is read f is fine 

restricted to A0. 

Theorem 3 

If  f: (X, τ, τf) → (Y, σ, σf) is fine  semi totally 
continuous and A is fine clopen subset of  (X, τ, τf) then 

the fine restriction f|A : A →(Y, σ, σf)  is fine semi totally 

continuous. 

Proof 

Consider the function f|A and V be fine semi open in Y. 

Since f is fine semi totally continuous, f-1(V) is fine 

clopen in X. 

Since A is fine clopen subset of U and (f|A)-1 (V) = A∩ f-

1(V) is fine clopen in X, it follow that  

(f|A)-1 (V) is fine clopen in X. 

Hence, f|A is fine totally continuous. 

Theorem 4 
The composition of two fine semi totally continuous 

functions is fine semi totally continuous:. 

Proof  

Let f: (X, τ, τf) → (Y, σ, σf) and g: (Y, σ, σf) → (Z, µ, µf) 

be any two fine semi totally continuous functions. 

Let V be fine semi open in Z. 

Since g is fine semi totally continuous, g-1(V) is fine 

clopen in Y. 

⇒ g--1(V) is fine open in Y. 

Since f is fine semi totally continuous, f-1g-1(V) is fine 

clopen in X. 

i.e.) (g∘f)-1 is fine clopen in X.  

Hence g∘f is fine  semi totally continuous. 

Theorem 5 

Every fine semi totally continuous function is fine semi 

continuous function. 

Proof 

Suppose f: (X, τ, τf) → (Y, σ, σf) is a fine semi totally 

continuous function. 

Let A be any fine open set in Y. 

Since f is fine semi totally continuous, f-1(A) is fine 
clopen in X. 

⇒ f-1(A) is fine open in X. 

Thus f is fine semi continuous function. 
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V.FINE TOTALLY SEMI CONTINUOUS 

FUNCTIONS AND THEIR SUBSTRATAL 

QUALITY 
Definition 1 

A function f: (X, τ, τf) → (Y, σ, σf)  is said to be fine 

totally semi continuous if  inverse image every fine open 

subset of Y is fine  semi clopen in X. 

Lemma: 5.2 
A function f: (X, τ, τf) → (Y, σ, σf)  is fine totally semi 

continuous iff inverse image of every fine closed subset 

of Y is fine semi clopen in X. 

Proof: 

Suppose f: (X, τ, τf) → (Y, σ, σf) is fine totally semi 

continuous. 

Let F be fine closed in Y. 

Then FC is fine open in Y. 

Since f is fine  totally semi continuous, f-1 (FC) is fine  

semi clopen in X. 

⇒ f-1 (F) is fine semi clopen in X. 
Conversely,  

Suppose inverse image of every fine closed subset of Y is 

fine semi clopen in X. 

Let G be fine open in Y. 

Then GC is fine closed set  in Y. 

By hypothesis, f-1 (GC) = (f-1(G))C  is fine semi clopen 

in X. 

i.e.) f-1 (G) is fine semi clopen in U.  Hence, f is fine 

totally semi continuous. 

Theorem 1 

Every fine totally semi continuous function is fine semi 
continuous function. 

Proof 

Suppose f: (X, τ, τf) → (Y, σ, σf) is fine totally semi 

continuous. 

Let A be a fine open set in Y. 

Sine f is fine totally semi continuous, f-1(A) is fine  semi 

clopen in X. 

⇒ f-1(A) is fine semi open in X. 

Thus f is fine semi continuous.  

Theorem 2 

Every fine semi totally continuous function is a fine 
totally semi continuous function. 

Proof 

Suppose f: (X, τ, τf) → (Y, σ, σf) is fine semi totally 

continuous function. 

Let A be a fine open set in Y. 

Since every fine open set is a fine semi open set and f is 

fine  semi totally continuous function it follows that f-

1(A) is fine clopen in X. 

Hence, f is a fine totally semi continuous function. 
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