

© 2019 IJSRET
 854

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

Implementation and Design of Xilinx based

Booth multiplier
 Divya Rathore

 Asst. Prof. Priyanshu Pandey

Electronics and Communication Engineering (VLSI stream)
Patel College of science and Technology

Indore,M.P., India

Abstract- Multiplication in hardware can be implemented in two ways either by using more hardware for achieving fast

execution or by using less hardware and end up with slow execution. The area and speed of the multiplier is an important

issue, increment in speed results in large area consumption and vice versa. Multipliers play vital role in most of the high

performance systems. Performances of a system depend to a great extent on the performance of multiplier thus multipliers

should be fast and consume less area and hardware. This idea forced us to study and review about the Booth’s Algorithm,

modified Booth’s algorithm and its radix-2, radix-4, radix-8 forms.

Keywords- Booth’s Algorithm, Modified Booth’s Algorithm, multiplication, multipliers, radix-2, Radix-4, radix-8.

 I. INTRODUCTION
It is a very challenging problem for the hardware

designers to develop low power, high speed and area
efficient portable electronic design. Mobile phones, smart

cards such as hearing aids and PDAs are the example of

portable consumer electronic products. It is the main

concern for operating hours of the battery and residing in

it but also greater computational capacity. At the circuit

level voltage scaling, threshold voltage, Transistor sizing,

network restructuring power down strategies and logic

style are used to achieve low power. In addition to this,

this technique also contributes to the reduction of

propagation delay and area occupancy as well.

Digital Signal Processors (DSPs) are used to perform the
most common operations such as video processing,

filtering and fast flourier transform (FFT). Such modules

perform an extensive sequence of multiply and

accumulate computations. Multiplication is the most

fundamental operation of digital computer systems and

digital signal processors.

Multiplication consists of three steps: generation of partial

products or (PPG), reduction of partial products (PPR),

and finally carry-propagate addition (CPA).In general

there are sequential and combinational multiplier
implementations. We only consider combinational case

here because the scale of integration now is large enough

to accept parallel multiplier implementations in digital

VLSI systems. Different multiplication algorithms vary in

the approaches of PPG, PPR, and CPA. For PPG, radix-2

is the easiest. To reduce the number of PPs and

consequently reduce the area/delay of PP reduction, one

operand is usually recoded into high-radix digit sets. The

most popular one is the radix-4 digit set {-2,-1, 0, 1, 2}.

For PPR, two alternatives exist: reduction by rows,

performed by an array of adders, and reduction by

columns, performed by an array of counters. The final

CPA requires a fast adder scheme because it is on the

critical path. In some cases, final CPA is postponed if it is

advantageous to keep redundant results from PPG for

further arithmetic operations[1-2-3].

A large number of transistors with high switching

transitions is used to perform a variety of multiplication

operations. In 64 point radix-4 pipelined FFT processor

the multiplier consumes 30% power and also occupies

46% chip area. Multiplier is most critical, power hungry

arithmetic unit that requires more area and Computational

time. Array based multipliers consumes low power as

compared to Wallace tree multipliers.

In order to improve the performance in tree based

multiplier the additional hardware is required, but at the
cost of increased layout and parasitic. On the other side,

array multiplier has smaller and regular layout. Therefore,

array multiplier is a better choice due to its optimized

with lesser hardware as small area leads to less switching

transitions. An Adder is the fundamental unit of the

multiplier and it has significant impact on the overall

performance of the system for power dissipation, delay

and area occupancy. In this paper, array multiplier is

proposed to achieve low power and high speed

multiplication operation[4].

II. BOOTH ALGORITHM
Signed multiplication is a vigilant process. Through

unsigned multiplication there is no need to take the sign

of the number into consideration. Even though in signed

multiplication the same procedure cannot be applied for

© 2019 IJSRET
 855

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

the reason that the signed number is in a 2„s compliment

form which would give in an inaccurate result if

multiplied in an analogous manner to unsigned

multiplication [5-6]. Thus here Booth„s algorithm comes

in. Booth„s algorithm conserves the sign of the end result.

While doing multiplication, strings of 0s in the multiplier

call for only shifting. While doing multiplication, strings

of 1s in the multiplier need an operation only at each end.

The multiplier blocks require intensive computations.

There are three major steps to any multiplication. In the

first step, the partial products are generated. In the second
step, the partial products are reduced to one row of final

sums and carries. In the third step, the final sums and

carries are added to generate the result. A modified booth

multiplier should concentrate on the following things.

 On reducing the total number of partial products

generated. This may include any coding methods or

reduction of computation complexity of generation of

partial products.

 A significant amount of delay is consumed in finding

two‟s complement of multiplicand. So this delay should

be reduced.

 The optimization of adder structure. Once partial

products generated, they have to be grouped and added

in a systematic manner consuming less delay.

This may consider the use of parallelism of the process.

Next is focus is on the method included in adding the

two operands; the carry propagation should be treated

efficiently. Finally for the hardware implementation,

suitable hardware descriptive language should be

chosen and the code should be well optimized,

synthesized and simulated using the optimum tool.

The main focus of recent multiplier papers has been on
rapidly reducing the number of partial product rows by

using some kind of circuit optimization and identifying

the critical paths and signal races and usage of different

adder structures to reduce the delay.[7-8-9]In this paper,

we discuss a new approach for 2‟scomplementation and

modified carry look ahead adder using Ling‟s equation

and their implementation on FPGA chip. In the next

section, the booth 2 algorithm and encoding are described

in detail. In section 3, modifications done to the booth

multiplier is explained. Section 4 presents FPGA

implementation. Finally in section 5 Result analyses has
been done.

1. Booth2 algorithm multiplier- generator that creates a

smaller number of partial products will allow the partial

product summation to be efficient and use less hardware.

The simple multiplication generator can be extended to

reduce the number of partial products by grouping the bits

of the multiplier into pairs, and selecting the partial

products from the set of 0, M, 2M or their complements,

where M is the multiplicand. This reduces the number of

partial products, by a factor two but also generates some

extra-bits for the sign extension and the 2‟s

complementation. [10, 11].All partial products set can be

produced using simple shifting and complementing. The

multiplier is partitioned into overlapping groups of 3bits,

and each group is decoded to select a single partial

product as per the selection table 3.1 shown below. Each

partial product is shifted 2 bit positions with respect to its

neighbors. The number of partial products has been

reduced to half of total number of multiplier bits. In

general there will be n/2 products, where n is the operand

length. The multiply by 2 can be obtained by a simple left

shift of the multiplicand and negative of number obtained
from its two‟s complement form. Following table shows

booth encoding table. According to that partial products

are generated and added to get final result.

 Table 1 booth encoding table.

III. LANGUAGE AND TOOLS USED
We used XILINX ISE v 10.2 for our programming. We

considered VHDL as our primary language. For test

bench waveforms also we also used Xilinx to write our

own test benches. Model Synthesis Map report all

features in Xilinx helped us a lot. We used Xilinx‟s X

Power Estimator (XPE) tool in order to calculate power

consumed in any arithmetic circuit. For calculation of

power using Xilinx‟s XPE we need to generate the map

report file in XILINX which will be saved in the same

directory with an extension “.mrp”. But in the later part of

the project we used SYNOPSIS tool for finding out
Power and delay and Area calculations

IV. IMPLEMENTATION
Booth's algorithm can be implemented by repeatedly

adding (with ordinary unsigned binary addition) one of

two predetermined values A and S to a product P, then

performing a rightward arithmetic shift on P. Let m and r

be the multiplicand and multiplier, respectively; and let x

and y represent the number of bits in m and r.

1. Determine the values of A and S, and the initial

value of P. All of these numbers should have a length

equal to (x + y + 1).

© 2019 IJSRET
 856

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

 A: Fill the most significant (leftmost) bits with the

value of m. Fill the remaining (y + 1) bits with zeros.

 S: Fill the most significant bits with the value of (−m)

in two's complement notation. Fill the remaining (y + 1)

bits with zeros.

 P: Fill the most significant x bits with zeros. To the

right of this, append the value of r. Fill the least

significant (rightmost) bit with a zero.

2. Determine the two least significant (rightmost) bits

of P.

 If they are 01, find the value of P + A. Ignore any
overflow.

 If they are 10, find the value of P + S. Ignore any

overflow.

 If they are 00, do nothing. Use P directly in the next

step.

 If they are 11, do nothing. Use P directly in the next

step.

3. Arithmetically shift the value obtained in the 2nd step

by a single place to the right. Let P now equal this new

value.

4. Repeat steps 2 and 3 until they have been done y times.
5. Drop the least significant (rightmost) bit from P.

this is the product of m and r.

 Flowchart Diagram

 Fig.1 Algorithm flow chart.

Fig. 2 RTL logic Diagram.

 Fig.3 Outcome in Xilinx.

Fig. 4 I/O of multiplier.

 Fig. 5 Power GUI.

Data Path: i2 to o Gate Net

Cell:in->out fanout Delay Delay Logical Name

(Net Name)

 -- ------------------------

 IBUF:I->O 1 1.328 0.910 i2_IBUF

(i2_IBUF)

 LUT3:I0->O 1 0.235 0.681 and2_1/o1

(o_OBUF)
 OBUF:I->O 2.912 o_OBUF (o)

 Total 6.066ns (4.475ns logic, 1.591ns

route)

 (73.8% logic, 26.2% route)

© 2019 IJSRET
 857

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-Jun-2019, ISSN (Online): 2395-566X

V. CONCLUSION AND FUTURE WORK
After going through all the hard work and after facing a

lot of problems, we managed to complete the objectives

of the project that are to implement Booth‟s Algorithm for

the design of a binary multiplier using different adder

architectures and carry out power analysis at various
levels.. We analyzed the area occupied and the time delay

consumed by different adders and found out an

appropriate relationship among the time and area

complexity the adders which we have taken into

consideration. After comparing all we came to a

conclusion that Ripple Carry Adders are best suited for

Low Power Applications. Then we turned our focus into

the design of Multipliers. First of all we designed a

Booth's Radix-2 multiplier and estimated its delay, area

and power.

Then a radix-4 multiplier was designed. A comparison
was done between Radix-2 and Radix-4 algorithm.

Comparing data between Radix-2 and Radix-4 booth

multipliers we found out that radix-4 consumes less

power than radix-2, because radix-4 uses almost a half

number of iterations than radix-2 As radix-4 seemed more

suitable for the design we carried out further analysis on

radix-4 multiplier by using different adder architectures

like RCA and CLA. Then we turned our focus into the

switching activity based power analysis of the Radix-4

Booth multiplier, and its power estimation. We did power

estimation at RTL level using Synopsys Design Compiler.
Further work can be carried out on this project in the

power estimation section. Power can be estimated at the

gate-level by generating gate-level netlist and also the

post layout analysis can be done for this design. Another

possible direction can be pursued for higher radix

encoding.

REFERENCES
[1] S.-W. Lee and I.-C. Park, "Low-power hybrid

structure of digital matched filters for direct sequence

spread spectrum systems," in International

Conference on Multimedia and Expo, ICME, 2003.

[2] N. Srisakthi, C. Rao and M. Vidya, "Implementation

of code synchronization for CDMA applications

using recursive digital matched filters," in

International Conference on Communication and

Signal Processing (ICCSP), 2014.

[3] O. M. V.E. Bychkov and V. Pravda, "Modern Digital
Matched Filters and Correlators for Active Radar," in

International Conference on Telecommunications,

and Computer Science (TCSET) ,Lviv, Ukraine,

2006. [4] Z. Deng, Y. Yu, D. Zou, W. Guan and L.

yang, "Optimization and implementation of digital

matched filters based on FPGA," in IEEE

International Conference on Broadband Network and

Multimedia Technology (IC-BNMT), 2011.

 [5] P. Woodward, "Probability and information theory

with application to radar.," in Pregamon Press, 1953.

[6] G. Turin, "An introduction to matched filters.," in

IRE Transaction on Information Theory, 1960. [7] A.

Kumar and C. V. R. Rao, "Low-power structures of

Digital Matched Filter for direct sequence spread

spectrum," in International Conference on Wireless

Communication, Signal Processing and Networking

(WiSPNET), 2016.

[8] G. Kumar and S. Sahoo, "Implementation of high

speed multipliers for high performance and low
power applications," in VLSI Design and Test

(VDAT), Ahmadabad, 2015.

 [9] Yeh and W.-C. a. C.-W. Jen, "High speed Booth

encoded parallel multiplier design," in IEEE

Transactions on Computers, 2000.

[10] F. Elguibaly, "A fast parallel multiplier-accumulator

using the modified Booth algorithm," in IEEE

Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, 2000.

[11] B. R and P. E, "Design of high speed multiplier using

Modified Booth Algorithm with hybrid carry look-
ahead adder," in International Conference on Circuit,

Power and Computing Technologies, 2016.

