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                      I. INTRODUCTION 
Suppose H (t) be a polynomial of degree m and suppose 

H    be its derivative. According to the famous result 
known as Bernstein’s inequality (see [7] or [2])                                                                                                                               
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Inequality (1) is sharp and equality (1) holds good for

.0,)(  bbttH m
  Inequality (1) extended to Lp -norm 

by zygmund [1] which shows if H(t) is a polynomial of 
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We get the result which is sound and the equality in (2) 

holds for .0,)(  bbttH m
 Let us suppose h  in 

(2), we get inequality (1). 

Suppose )(tHP  denotes the polar differentiation of 

polynomial H(z) with respect to a real or complex number

  . Then  

)(tHP = m H (t) + (   − t) tH ( ). 

The polynomial )(tHP   is of degree at most 1m   

and it generalizes the ordinary derivative in the sense that 
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Uniformly on compact subsets of C. 

As an extension of (1) to the polar derivative, Aziz and 

Shah (Theorem 4 with ,1k  [8]) have shown that if  

H (z) is a polynomial of degree m, then for every complex 

number     with ,1
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Inequality (3) becomes equality for .0,)(  bbttH m
  

If we divide the both side of the (3) by     and suppose 

,   we get the inequality (1).  

It is natural to seek  Lp-norm analog of inequality (3). In 
view of the Lp -norm extension (2) of inequality (1), one 

would expect that if H(t) is a polynomial of degree m, 

then  
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Will be Lp -norm extension of (3) analogous to (2). But 

unfortunately inequality (4) is not, in general, true for 

every real or complex number    . To see this, we will 

take in particular 
mittHh )1()(,2  and  i    

where    is any positive real number such that  
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Using (6) and (7) in (4),we get 
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Setting   β=iγ  in  (8), we get 
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This inequality can be written as  
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Sinc γ ≥ 1, we have 
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 and hence from (9), it follows that 
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It gets contradicts (5). Hence inequality (4) is not, in 

general. True for all polynomials H(t) of degree .1m    

However, we have been able to prove the following 

generalization of (2) to the polar derivatives. 

Theorem 1. If H(t) is a polynomial of degree m, then for 

every complex  number    and ,1h    
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Remark. If we divide both sides of (10) by    and 

make  , we get inequality (2) due to Zygmund 

[1]. 

For polynomials H(t) which does not vanish in the unit 
disk, the right hand side of (2) can be improved. In fact, in 

this direction, it was shown by De-Bruijn [4] that if H(t) 

does not vanish in ,1z
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Inequality (11) is best possible with equality for 

cbcbttH m  ,)( .If we let h  in (11), it 

follows that if thentfortH ,10)( 
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Inequality (13) was conjectured by Erdos and later 

verified by Lax[3]. Aziz [6] extended (13) to the polar 

derivative of a polynomial and proved that if H(t) is a 
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polynomials of degree m which does not vanish in 1t , 

then for every complex number  with ,1    
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This estimate (14) is best possible with equality for 

1)(  mttH   If we divide both sides of (14) by   

and make  , we get inequality (13) due to Lax 

[3]. While seeking the desired extension to the polar 

derivatives, recently Govil et al [10] have made an 

incomplete attempt by claiming to have proved the 

following generalization of (11) and (14). 

Theorem2. If  H(t) is a polynomials of degree m which 

does not vanish ,1t  in  then for every complex 

number 
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Where 
pC is defined by (12). Unfortunately the proof of 

this theorem, which is the main result (theorem 1.1 of 

[10]) given by govil, Nyuydinkong and Tameru is not 

correct, because the claim made by the authors on page 
624 in lines 12 to 16 by using Lema 2.3 is incorrect. The 

reason being that their polynomial. 
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 Along with the equation (24) of [4]. It is worthwhile to 

note here that if we take 
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624, line 10 of [4]), then in view of the inequality 
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(see Theorem 4 with k=1 of [8], the above bounded 

functional has norm mN 
 

Therefore, if we use lemma 2.3 of [4] which is due to 

Rahman (lemma 3 of [5]), it would follow that 
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For every h ≥1 and │β│≥1, and which is not true in 

general as shown above.
 Here we shall also present a correct proof of theorem 2, 

which shall validate Theorems 1.2 and 1.3 of Govil el al 

[10] as well. Finally we shall also present a short proof of 

Theorem 1.3 of [10]. That is, we prove the following. 

Theorem 3. If H(t) is a self inverse polynomial of degree 

m, then for every complex number     and ,1h
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Where 
pC   is the same as in Theorem2. 

 

II. LEMMAS 
For the proofs of the theorem, we need the following 

lemmas. 

Lemma 1. If H(t) is a polynomial of degree m which does 

not vanish ,1t
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Lemma 1 is due to Aziz (p.190 of [6] 

Lemma 2. If H(t) is a polynomial of degree m and
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Lemma2 is due to Aziz [11] (see also [5]. We also need 

the following lemma. 

Leema3. If H(t) is a polynomial of degree m,
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Proof of lemma 3. We have by Minkowski’s inequality 

for every 1h    and    real,  
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 This gives with the help of lemma2,  
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This completes the proof of Lemma3. 
 

III. PROOF OF THE THEOREMS 
Proof of Theorem 1. By Lemma3, we have for every  

complex number  andh 1,  real  
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Using in (20) the fact that for any ,0h
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 This completes the proof of theorem 1.  

Proof of Theorem 2. Since H(t) is a polynomial of  

degree  m which does not vanish in ,1h by Lemma 1 

we have for every complex number   with 1
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Now for every real β and r≥1, we have 
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Using this in (22), we conclude that for every complex 

number    with 1 and 1h ,  
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Which immediately leads to (15) and this completes the 

proof of theorem 2. 

Proof of Theorem3. Since H(t) is a self inversive 

polynomials of degree m, we have )()( * tQtH   where 

t
HttQ m 1

)(*     Therefore, for every complex number    

 , )()( * tQPtHP    for all ,Ct    

So that  

           

1
)(

)(*










i

i

eHP

eQP
  

Using this in (22) and proceeding similarly as in the proof 

of theorem 2, we get (16) and this proves Theorem3. 
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