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Abstract- This paper gives a bird’s eye view of Reinforcement Learning, an area under Artificial Intelligence. It starts with the 

history of reinforcement learning and its traditional models then goes on to delve deeper into one of the modern algorithm 

called Deep Q-Learning. It is aimed at discussing the intuition behind Deep Q-Learning and ways to implement it. Also 

discussed are various aspects to overcome drawbacks of Q Learning. 
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I. INTRODUCTION 
1. Reinforcement Learning 
Reinforcement learning is learning what to do--how to 

map situations to tell which actions to take, as in most 

forms of machine learning, but instead must discover 

which actions yield the most reward by trying them. In 

the most interesting and challenging cases, actions may 

affect not only the immediate reward but also the next 

situation and, through that, all subsequent rewards. This 

is called the delayed reward and is one of two important 
characteristics of Reinforcement Learning (The other 

being trial-and-error search). 

 

Reinforcement learning is different from supervised 

learning, the kind of learning studied in most current 

research in machine learning, statistical pattern 

recognition, and artificial neural networks. Supervised 

learning is learning from examples provided by a 

knowledgeable external supervisor. This is an important 

kind of learning, but alone it is not adequate for learning 

from interaction. One of the challenges that arise in 
reinforcement learning and not in other kinds of learning 

is the trade-off between exploration and exploitation.  

 

To obtain a lot of rewards, a reinforcement learning 

agent must prefer actions that it has tried in the past and 

found to be effective in producing rewards. But to 

discover such actions, it has to try actions that it has not 

selected before. The agent has to exploit what it already 

knows in order to obtain a reward, but it also has to 

explore in order to make better action selections in the 

future. The dilemma is that neither exploration nor 

exploitation can be pursued exclusively without failing 
at the task.  

 

The agent must try a variety of actions and progressively 

favor those that appear to be best. On a stochastic task, 

each action must be tried many times to gain a reliable 

estimate of its expected reward. A number of factors are 

involved in the dataflow and decision process of 

Reinforcement Learning. These help decide what action 

to take in a particular state. A few are discussed below. 

 

 
Fig.1 Reinforcement Learning 

 

1.1 Input- The input should be an initial state from 

which the model will start 

1.2 Output- There are many possible output as there are 

variety of solution to a particular problem 

1.3 Training- The training is based upon the input, the 

model will return a state and the user will decide to 

reward or punish the model based on its output. 
The model keeps continues to learn. The best solution is 

decided based on the maximum reward. The „deep‟ in 

deep reinforcement learning means it is a consequence of 

applying deep learning to reinforcement learning. The 

model uses Q values to determine the best action.  

 

In traditional learning this is based on the Policy and in 

Q-learning is based on bellman equation whence the data 

is extracted from the Q-table. In deep reinforcement 

learning or deep Q-learning we use a neural network to 

approximate the Q-values and decide future actions so as 
to maximize reward. Deep Q-Learning is known to fare 

better than policy gradients or the Q-Table in case of the 

presence of a large number of states. 

2. Motivation 
Deep Learning agents are still unresolved because what 

is happening in the network isn‟t completely clear to 
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many scholars. There are researchers working in this 

field to discover and solve real-life problems using 

Reinforcement Learning. Solving Game AI‟s using Deep 

Learning can be a futuristic work as we expect the agent 

to learn as humans do in a trial-and-error and reward-

penalty basis. Playing with a bot that has been highly 

trained on a particular game can make it really 

challenging for the human player and also help in 

developing new insights on how to play the game better.  

3. History on Game Bots 

Most of the game bots in the past were hard-coded, i.e., 
most of the conditions are given and the bots act 

according to them. Such bots are known as Scripted 

Bots. Later, IBM‟s Deep Blue computer defeated Garry 

Kasparov, a Grandmaster in 1997. From 2007, modern 

Gaming introduces more technical bots which can react 

according to realistic markers, such as sound made by a 

player and the footprints they leave behind.  

 

Nintendo started a competition called “Mario AI 

Championship” in which the players had to create a 

game bot that can play the Mario game. The bots were 
built using Neural Networks and cannot see beyond the 

computer screen. In 2014, Google acquired „Deep mind‟, 

an AI-based company that uses reinforcement learning to 

make a bot that is not pre-programmed but can play 

arcade games like Space Invaders and Breakout. 

4. Observations 

If we ever want to do better than take random actions at 

each step, it‟d probably be good to actually know what 

our actions are doing to the environment. The 

environment‟s step function returns exactly what we 

need. In fact, step returns four values. These are: 

4.1 Observation (object)-  an environment-specific 
object representing your observation of the environment. 

For example, pixel data from a camera, joint angles and 

joint velocities of a robot, or the board state in a board 

game. 

4.2 Reward (float)-  amount of reward achieved by the 

previous action. The scale varies between environments, 

but the goal is always to increase your total reward. 

4.3 Done (Boolean)- whether it‟s time to reset the 

environment again. Most (but not all) tasks are divided 

up into well-defined episodes, and done being True 

indicates the episode has terminated. (For example, 
perhaps the pole tipped too far, or you lost your last life.) 

4.4 Info (dict) - diagnostic information useful for 

debugging. It can sometimes be useful for learning (for 

example, it might contain the raw probabilities behind 

the environment‟s last state change). However, official 

evaluations of your agent are not allowed to use this for 

learning. This is just an implementation of the classic 

“agent-environment loop”. Each time step, the agent 

chooses an action, and the environment returns an 

observation. 

 

II. PREVIOUS WORK 
Reinforcement Learning is situated in between 

supervised learning and unsupervised learning. It deals 

with learning in sequential decision-making problems 

where the feedback is limited. The previous model used 

has been a Q-learning algorithm to facilitate 
reinforcement learning. 

1. Q-learning 
In Q-learning we define a function Q(s,a) representing 

the discounted future reward when we perform action a 

in state s, and continue optimally from that point on. 

                     𝑄(𝑠𝑡, 𝑎𝑡) = 𝑚𝑎𝑥𝜋𝑅𝑡 + 1    (1) 

The way to think about Q(s,a) is that it is the best 

possible score at the end of game after performing action 

a in state s. It is called Q-function, because it represents 

the quality of certain action in given state. We can‟t 

estimate the score at the end of the game. But as a 
theoretical construct we can assume existence of such a 

function.  

          π(s)  =  argmaxaQ s, a                             (2) 

Here π represents the policy, the rule how we choose an 

action in each state. Just like with discounted future 

rewards we can express Q-value of state s and action a in 

terms of Q-value of next state s′. 

            Q(s, a)  =  r + γmaxa′Q(s′, a′)     (3) 

This is called the Bellman equation. If you think about it, 

it is quite logical – maximum future reward for this state 
and action is the immediate reward plus maximum future 

reward for the next state. The main idea in Q-learning is 

that we can iteratively approximate the Q-function using 

the Bellman equation. In the simplest case the Q-

function is implemented as a table, with states as rows 

and actions as columns. 

 

                       III. DEEP Q LEARNING 
As discussed in the previous section, we use Bellman 

equation to approximate Q value of an action. Since 

neural networks are known to perform universal 

approximations, we used a neural network to 

approximate the Q value of a future action. But there are 

other things involved in using a neural network. 

 
Fig.2 Neural Network to approximate Q value 
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1. Experience Replay 

Deep Q-Networks tend to forget what they‟ve learned. 

Experience Replay is a technique to overcome this issue. 

We sample a random batch of experiences from the large 

table and train the model on it again. To perform 

experience replay we store the agent's experiences. This 

means instead of running Q-learning on state/action pairs 

as they occur during simulation or actual experience, the 

system stores the data discovered for [state, action, 

reward, next, state] - typically in a large table. Note this 

does not store associated values - this is the raw data to 
feed into action-value calculations later. The learning 

phase is then logically separate from gaining experience, 

and based on taking random samples from this table. 

You still want to interleave the two processes - acting 

and learning - because improving the policy will lead to 

different behavior that should explore actions closer to 

optimal ones, and you want to learn from those. 

However, you can split this how you like - e.g. take one 

step, learn from three random prior steps etc.  

 

The Q-Learning targets when using experience replay 
use the same targets as the online version, so there is no 

new formula for that. The loss formula given is also the 

one you would use for DQN without experience replay. 

The difference is only which s, a, r, s', a' you feed into it. 

In DQN, the Deep Mind team also maintained two 

networks and switched which one was learning and 

which one feeding in current action-value estimates as 

bootstraps. This helped with stability of the algorithm 

when using a non-linear function approximate. 

 

2. Discounted Future Reward 

To perform well in long-term, we need to take into 
account not only the immediate rewards, but also the 

future awards we are going to get. Given one run of 

Markov decision process, we can easily calculate the 

total reward for one episode: 

          𝑅 =  𝑟1 + 𝑟2 + 𝑟3 + ⋯+ 𝑟𝑛    (4) 

Given that, the total future reward from time point t 

onward can be expressed as: 

       𝑅𝑡 =  𝑟𝑡 + 𝑟𝑡 + 1 + 𝑟𝑡 + 2 + ⋯+ 𝑟𝑛   (5) 

But because our environment is stochastic, we can never 

be sure, if we will get the same rewards the next time we 
perform the same actions. The more into the future we 

go, the more it may diverge. For that reason it is 

common to use discounted future reward instead: 

    𝑅𝑡 =  𝑟𝑡 + 𝛾𝑟𝑡 + 1 + 𝛾2𝑟𝑡 + 2 … + 𝛾𝑛 − 𝑡𝑟𝑛  (6) 

Here γ is the discount factor between 0 and 1 – the more 

into the future the reward is, the less we take it into 

consideration. It is easy to see, that discounted future 

reward at time step t can be expressed in terms of the 

same thing at time step t+1: 

   𝑅𝑡 =  𝑟𝑡 + 𝛾(𝑟𝑡 + 1 + 𝛾 𝑟𝑡 + 2 + ⋯ )  (7)If we set 
the discount factor γ=0, then our strategy will be short-

sighted and we rely only on the immediate rewards. If 

we want to balance between immediate and future 

rewards, we should set discount factor to something like 

γ=0.9. If our environment is deterministic and the same 

actions always result in same rewards, then we can set 

discount factor γ=1. A good strategy for an agent would 

be to always choose an action, that maximizes the 

discounted future reward. 

 

IV. CONCLUSION  
We have described the Game bots project as an 

infrastructure for multi-agent systems research that 

supports different platforms and is widely available. 

Reinforcement Learning is a widely used real-world 

problem-solving technique and a Deep Learning based 

game bot can solve any Atari and Flash game without 

having any prior information about the game 

environment. It only needs to be fed the raw pixels of the 

game and the game controls.A well-trained and well-
designed game bot can outperform human gamers. 
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