

© 2019 IJSRET
 640

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-June-2019, ISSN (Online): 2395-566X

An Overview of Deep Q Learning
 Bhavesh Dhera M. Mani Teja G. Yashwanth Reddy

 bhavesh.dhera@gmail.com murarishettymani@gmail.com
Dept. of Computer Science & Engg.

Gokaraju Rangaraju Institute of Engineering &Technology
Hyderabad, India

Abstract- This paper gives a bird’s eye view of Reinforcement Learning, an area under Artificial Intelligence. It starts with the

history of reinforcement learning and its traditional models then goes on to delve deeper into one of the modern algorithm

called Deep Q-Learning. It is aimed at discussing the intuition behind Deep Q-Learning and ways to implement it. Also

discussed are various aspects to overcome drawbacks of Q Learning.

Keywords – Reinforcement Learning, Q-Learning, Deep Q-learning, Deep Q Network.

I. INTRODUCTION
1. Reinforcement Learning
Reinforcement learning is learning what to do--how to

map situations to tell which actions to take, as in most

forms of machine learning, but instead must discover

which actions yield the most reward by trying them. In

the most interesting and challenging cases, actions may

affect not only the immediate reward but also the next

situation and, through that, all subsequent rewards. This

is called the delayed reward and is one of two important
characteristics of Reinforcement Learning (The other

being trial-and-error search).

Reinforcement learning is different from supervised

learning, the kind of learning studied in most current

research in machine learning, statistical pattern

recognition, and artificial neural networks. Supervised

learning is learning from examples provided by a

knowledgeable external supervisor. This is an important

kind of learning, but alone it is not adequate for learning

from interaction. One of the challenges that arise in
reinforcement learning and not in other kinds of learning

is the trade-off between exploration and exploitation.

To obtain a lot of rewards, a reinforcement learning

agent must prefer actions that it has tried in the past and

found to be effective in producing rewards. But to

discover such actions, it has to try actions that it has not

selected before. The agent has to exploit what it already

knows in order to obtain a reward, but it also has to

explore in order to make better action selections in the

future. The dilemma is that neither exploration nor

exploitation can be pursued exclusively without failing
at the task.

The agent must try a variety of actions and progressively

favor those that appear to be best. On a stochastic task,

each action must be tried many times to gain a reliable

estimate of its expected reward. A number of factors are

involved in the dataflow and decision process of

Reinforcement Learning. These help decide what action

to take in a particular state. A few are discussed below.

Fig.1 Reinforcement Learning

1.1 Input- The input should be an initial state from

which the model will start

1.2 Output- There are many possible output as there are

variety of solution to a particular problem

1.3 Training- The training is based upon the input, the

model will return a state and the user will decide to

reward or punish the model based on its output.
The model keeps continues to learn. The best solution is

decided based on the maximum reward. The „deep‟ in

deep reinforcement learning means it is a consequence of

applying deep learning to reinforcement learning. The

model uses Q values to determine the best action.

In traditional learning this is based on the Policy and in

Q-learning is based on bellman equation whence the data

is extracted from the Q-table. In deep reinforcement

learning or deep Q-learning we use a neural network to

approximate the Q-values and decide future actions so as
to maximize reward. Deep Q-Learning is known to fare

better than policy gradients or the Q-Table in case of the

presence of a large number of states.

2. Motivation
Deep Learning agents are still unresolved because what

is happening in the network isn‟t completely clear to

© 2019 IJSRET
 641

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-June-2019, ISSN (Online): 2395-566X

many scholars. There are researchers working in this

field to discover and solve real-life problems using

Reinforcement Learning. Solving Game AI‟s using Deep

Learning can be a futuristic work as we expect the agent

to learn as humans do in a trial-and-error and reward-

penalty basis. Playing with a bot that has been highly

trained on a particular game can make it really

challenging for the human player and also help in

developing new insights on how to play the game better.

3. History on Game Bots

Most of the game bots in the past were hard-coded, i.e.,
most of the conditions are given and the bots act

according to them. Such bots are known as Scripted

Bots. Later, IBM‟s Deep Blue computer defeated Garry

Kasparov, a Grandmaster in 1997. From 2007, modern

Gaming introduces more technical bots which can react

according to realistic markers, such as sound made by a

player and the footprints they leave behind.

Nintendo started a competition called “Mario AI

Championship” in which the players had to create a

game bot that can play the Mario game. The bots were
built using Neural Networks and cannot see beyond the

computer screen. In 2014, Google acquired „Deep mind‟,

an AI-based company that uses reinforcement learning to

make a bot that is not pre-programmed but can play

arcade games like Space Invaders and Breakout.

4. Observations

If we ever want to do better than take random actions at

each step, it‟d probably be good to actually know what

our actions are doing to the environment. The

environment‟s step function returns exactly what we

need. In fact, step returns four values. These are:

4.1 Observation (object)- an environment-specific
object representing your observation of the environment.

For example, pixel data from a camera, joint angles and

joint velocities of a robot, or the board state in a board

game.

4.2 Reward (float)- amount of reward achieved by the

previous action. The scale varies between environments,

but the goal is always to increase your total reward.

4.3 Done (Boolean)- whether it‟s time to reset the

environment again. Most (but not all) tasks are divided

up into well-defined episodes, and done being True

indicates the episode has terminated. (For example,
perhaps the pole tipped too far, or you lost your last life.)

4.4 Info (dict) - diagnostic information useful for

debugging. It can sometimes be useful for learning (for

example, it might contain the raw probabilities behind

the environment‟s last state change). However, official

evaluations of your agent are not allowed to use this for

learning. This is just an implementation of the classic

“agent-environment loop”. Each time step, the agent

chooses an action, and the environment returns an

observation.

II. PREVIOUS WORK
Reinforcement Learning is situated in between

supervised learning and unsupervised learning. It deals

with learning in sequential decision-making problems

where the feedback is limited. The previous model used

has been a Q-learning algorithm to facilitate
reinforcement learning.

1. Q-learning
In Q-learning we define a function Q(s,a) representing

the discounted future reward when we perform action a

in state s, and continue optimally from that point on.

 𝑄(𝑠𝑡, 𝑎𝑡) = 𝑚𝑎𝑥𝜋𝑅𝑡 + 1 (1)

The way to think about Q(s,a) is that it is the best

possible score at the end of game after performing action

a in state s. It is called Q-function, because it represents

the quality of certain action in given state. We can‟t

estimate the score at the end of the game. But as a
theoretical construct we can assume existence of such a

function.

 π(s) = argmaxaQ s, a (2)

Here π represents the policy, the rule how we choose an

action in each state. Just like with discounted future

rewards we can express Q-value of state s and action a in

terms of Q-value of next state s′.

 Q(s, a) = r + γmaxa′Q(s′, a′) (3)

This is called the Bellman equation. If you think about it,

it is quite logical – maximum future reward for this state
and action is the immediate reward plus maximum future

reward for the next state. The main idea in Q-learning is

that we can iteratively approximate the Q-function using

the Bellman equation. In the simplest case the Q-

function is implemented as a table, with states as rows

and actions as columns.

 III. DEEP Q LEARNING
As discussed in the previous section, we use Bellman

equation to approximate Q value of an action. Since

neural networks are known to perform universal

approximations, we used a neural network to

approximate the Q value of a future action. But there are

other things involved in using a neural network.

Fig.2 Neural Network to approximate Q value

© 2019 IJSRET
 642

International Journal of Scientific Research & Engineering Trends
Volume 5, Issue 3, May-June-2019, ISSN (Online): 2395-566X

1. Experience Replay

Deep Q-Networks tend to forget what they‟ve learned.

Experience Replay is a technique to overcome this issue.

We sample a random batch of experiences from the large

table and train the model on it again. To perform

experience replay we store the agent's experiences. This

means instead of running Q-learning on state/action pairs

as they occur during simulation or actual experience, the

system stores the data discovered for [state, action,

reward, next, state] - typically in a large table. Note this

does not store associated values - this is the raw data to
feed into action-value calculations later. The learning

phase is then logically separate from gaining experience,

and based on taking random samples from this table.

You still want to interleave the two processes - acting

and learning - because improving the policy will lead to

different behavior that should explore actions closer to

optimal ones, and you want to learn from those.

However, you can split this how you like - e.g. take one

step, learn from three random prior steps etc.

The Q-Learning targets when using experience replay
use the same targets as the online version, so there is no

new formula for that. The loss formula given is also the

one you would use for DQN without experience replay.

The difference is only which s, a, r, s', a' you feed into it.

In DQN, the Deep Mind team also maintained two

networks and switched which one was learning and

which one feeding in current action-value estimates as

bootstraps. This helped with stability of the algorithm

when using a non-linear function approximate.

2. Discounted Future Reward

To perform well in long-term, we need to take into
account not only the immediate rewards, but also the

future awards we are going to get. Given one run of

Markov decision process, we can easily calculate the

total reward for one episode:

 𝑅 = 𝑟1 + 𝑟2 + 𝑟3 + ⋯+ 𝑟𝑛 (4)

Given that, the total future reward from time point t

onward can be expressed as:

 𝑅𝑡 = 𝑟𝑡 + 𝑟𝑡 + 1 + 𝑟𝑡 + 2 + ⋯+ 𝑟𝑛 (5)

But because our environment is stochastic, we can never

be sure, if we will get the same rewards the next time we
perform the same actions. The more into the future we

go, the more it may diverge. For that reason it is

common to use discounted future reward instead:

 𝑅𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡 + 1 + 𝛾2𝑟𝑡 + 2 … + 𝛾𝑛 − 𝑡𝑟𝑛 (6)

Here γ is the discount factor between 0 and 1 – the more

into the future the reward is, the less we take it into

consideration. It is easy to see, that discounted future

reward at time step t can be expressed in terms of the

same thing at time step t+1:

 𝑅𝑡 = 𝑟𝑡 + 𝛾(𝑟𝑡 + 1 + 𝛾 𝑟𝑡 + 2 + ⋯) (7)If we set
the discount factor γ=0, then our strategy will be short-

sighted and we rely only on the immediate rewards. If

we want to balance between immediate and future

rewards, we should set discount factor to something like

γ=0.9. If our environment is deterministic and the same

actions always result in same rewards, then we can set

discount factor γ=1. A good strategy for an agent would

be to always choose an action, that maximizes the

discounted future reward.

IV. CONCLUSION
We have described the Game bots project as an

infrastructure for multi-agent systems research that

supports different platforms and is widely available.

Reinforcement Learning is a widely used real-world

problem-solving technique and a Deep Learning based

game bot can solve any Atari and Flash game without

having any prior information about the game

environment. It only needs to be fed the raw pixels of the

game and the game controls.A well-trained and well-
designed game bot can outperform human gamers.

REFERENCES
[1] Gal A. Kaminka, Manuela M. Veloso, Steve

Schaffer, Chris Sollitto, Rogelio Adobbati, Andrew

N. Marshall, Andrew Scholer, and Sheila Tejada.
“GameBots: A Flexible Test Bed for Multiagent

Team Research”Communications of the ACM,

45(1):43–45, January 2002.

 [2] “Demystifying Deep Reinforcement

Learning”(https://neuro.cs.ut.ee/demystifying-deep-

reinforcement-learning/)

[3] Andrej Karpathy‟s blog

(http://karpathy.github.io/2016/05/31/rl/)

[4] Christopher JCH Watkins and Peter Dayan. “Q-

learning” .Machine learning, 8(3-4):279–292,1992.

[5] Richard Sutton and Andrew Barto.”Reinforcement

Learning: An Introduction.” MIT Press,1998.
[6] Andrew Moore and Chris Atkeson. “Prioritized

sweeping: Reinforcement learning with lessdata and

less real time.” Machine Learning, 13:103–130,

1993..

[7] Marc Belle mare, Joel Veness, and Michael

Bowling. “Sketch-based linear value function

approximation.” In Advances in Neural Information

Processing Systems 25, pages 2222–2230,2012.

https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
http://karpathy.github.io/2016/05/31/rl/

